Metamath Proof Explorer


Theorem disjpr2

Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion disjpr2 A C B C A D B D A B C D =

Proof

Step Hyp Ref Expression
1 df-pr C D = C D
2 1 ineq2i A B C D = A B C D
3 indi A B C D = A B C A B D
4 2 3 eqtri A B C D = A B C A B D
5 df-pr A B = A B
6 5 ineq1i A B C = A B C
7 indir A B C = A C B C
8 6 7 eqtri A B C = A C B C
9 disjsn2 A C A C =
10 disjsn2 B C B C =
11 9 10 anim12i A C B C A C = B C =
12 un00 A C = B C = A C B C =
13 11 12 sylib A C B C A C B C =
14 8 13 syl5eq A C B C A B C =
15 14 adantr A C B C A D B D A B C =
16 5 ineq1i A B D = A B D
17 indir A B D = A D B D
18 16 17 eqtri A B D = A D B D
19 disjsn2 A D A D =
20 disjsn2 B D B D =
21 19 20 anim12i A D B D A D = B D =
22 un00 A D = B D = A D B D =
23 21 22 sylib A D B D A D B D =
24 18 23 syl5eq A D B D A B D =
25 24 adantl A C B C A D B D A B D =
26 15 25 uneq12d A C B C A D B D A B C A B D =
27 un0 =
28 26 27 eqtrdi A C B C A D B D A B C A B D =
29 4 28 syl5eq A C B C A D B D A B C D =