Metamath Proof Explorer


Theorem disjressuc2

Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)

Ref Expression
Assertion disjressuc2 AVuAAvAAu=vuRvR=uAvAu=vuRvR=uAuRAR=

Proof

Step Hyp Ref Expression
1 eqeq1 u=Au=vA=v
2 eceq1 u=AuR=AR
3 2 ineq1d u=AuRvR=ARvR
4 3 eqeq1d u=AuRvR=ARvR=
5 1 4 orbi12d u=Au=vuRvR=A=vARvR=
6 eqeq2 v=Au=vu=A
7 eceq1 v=AvR=AR
8 7 ineq2d v=AuRvR=uRAR
9 8 eqeq1d v=AuRvR=uRAR=
10 6 9 orbi12d v=Au=vuRvR=u=AuRAR=
11 eqeq1 u=Au=AA=A
12 2 ineq1d u=AuRAR=ARAR
13 12 eqeq1d u=AuRAR=ARAR=
14 11 13 orbi12d u=Au=AuRAR=A=AARAR=
15 5 10 14 2ralunsn AVuAAvAAu=vuRvR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=A=AARAR=
16 eqid A=A
17 16 orci A=AARAR=
18 17 biantru vAA=vARvR=vAA=vARvR=A=AARAR=
19 18 anbi2i uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=A=AARAR=
20 15 19 bitr4di AVuAAvAAu=vuRvR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=
21 eqeq1 u=vu=Av=A
22 eqcom v=AA=v
23 21 22 bitrdi u=vu=AA=v
24 eceq1 u=vuR=vR
25 24 ineq1d u=vuRAR=vRAR
26 incom vRAR=ARvR
27 25 26 eqtrdi u=vuRAR=ARvR
28 27 eqeq1d u=vuRAR=ARvR=
29 23 28 orbi12d u=vu=AuRAR=A=vARvR=
30 29 cbvralvw uAu=AuRAR=vAA=vARvR=
31 30 biimpi uAu=AuRAR=vAA=vARvR=
32 31 pm4.71i uAu=AuRAR=uAu=AuRAR=vAA=vARvR=
33 32 anbi2i uAvAu=vuRvR=uAu=AuRAR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=
34 3anass uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=
35 df-3an uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=
36 33 34 35 3bitr2ri uAvAu=vuRvR=uAu=AuRAR=vAA=vARvR=uAvAu=vuRvR=uAu=AuRAR=
37 20 36 bitrdi AVuAAvAAu=vuRvR=uAvAu=vuRvR=uAu=AuRAR=
38 elneq uAuA
39 38 neneqd uA¬u=A
40 39 biorfd uAuRAR=u=AuRAR=
41 40 ralbiia uAuRAR=uAu=AuRAR=
42 41 anbi2i uAvAu=vuRvR=uAuRAR=uAvAu=vuRvR=uAu=AuRAR=
43 37 42 bitr4di AVuAAvAAu=vuRvR=uAvAu=vuRvR=uAuRAR=