Metamath Proof Explorer


Theorem divalglem7

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem7.1 D
divalglem7.2 D0
Assertion divalglem7 X0D1KK0¬X+KD0D1

Proof

Step Hyp Ref Expression
1 divalglem7.1 D
2 divalglem7.2 D0
3 oveq1 X=ifX0D1X0X+KD=ifX0D1X0+KD
4 3 eleq1d X=ifX0D1X0X+KD0D1ifX0D1X0+KD0D1
5 4 notbid X=ifX0D1X0¬X+KD0D1¬ifX0D1X0+KD0D1
6 5 imbi2d X=ifX0D1X0K0¬X+KD0D1K0¬ifX0D1X0+KD0D1
7 neeq1 K=ifKK0K0ifKK00
8 oveq1 K=ifKK0KD=ifKK0D
9 8 oveq2d K=ifKK0ifX0D1X0+KD=ifX0D1X0+ifKK0D
10 9 eleq1d K=ifKK0ifX0D1X0+KD0D1ifX0D1X0+ifKK0D0D1
11 10 notbid K=ifKK0¬ifX0D1X0+KD0D1¬ifX0D1X0+ifKK0D0D1
12 7 11 imbi12d K=ifKK0K0¬ifX0D1X0+KD0D1ifKK00¬ifX0D1X0+ifKK0D0D1
13 nnabscl DD0D
14 1 2 13 mp2an D
15 0z 0
16 0le0 00
17 14 nngt0i 0<D
18 14 nnzi D
19 elfzm11 0D00D10000<D
20 15 18 19 mp2an 00D10000<D
21 15 16 17 20 mpbir3an 00D1
22 21 elimel ifX0D1X00D1
23 15 elimel ifKK0
24 14 22 23 divalglem6 ifKK00¬ifX0D1X0+ifKK0D0D1
25 6 12 24 dedth2h X0D1KK0¬X+KD0D1