Metamath Proof Explorer


Theorem divdiv2

Description: Division by a fraction. (Contributed by NM, 27-Dec-2008)

Ref Expression
Assertion divdiv2 ABB0CC0ABC=ACB

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 10
3 1 2 pm3.2i 110
4 divdivdiv A110BB0CC0A1BC=AC1B
5 3 4 mpanl2 ABB0CC0A1BC=AC1B
6 5 3impb ABB0CC0A1BC=AC1B
7 div1 AA1=A
8 7 3ad2ant1 ABB0CC0A1=A
9 8 oveq1d ABB0CC0A1BC=ABC
10 mullid B1B=B
11 10 ad2antrl ABB01B=B
12 11 3adant3 ABB0CC01B=B
13 12 oveq2d ABB0CC0AC1B=ACB
14 6 9 13 3eqtr3d ABB0CC0ABC=ACB