Metamath Proof Explorer


Theorem divge1b

Description: The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020)

Ref Expression
Assertion divge1b A+BAB1BA

Proof

Step Hyp Ref Expression
1 rpcn A+A
2 1 mullidd A+1A=A
3 2 eqcomd A+A=1A
4 3 adantr A+BA=1A
5 4 breq1d A+BAB1AB
6 1red A+B1
7 simpr A+BB
8 rpregt0 A+A0<A
9 8 adantr A+BA0<A
10 lemuldiv 1BA0<A1AB1BA
11 6 7 9 10 syl3anc A+B1AB1BA
12 5 11 bitrd A+BAB1BA