Metamath Proof Explorer


Theorem divrec

Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divrec ABB0AB=A1B

Proof

Step Hyp Ref Expression
1 simp2 ABB0B
2 simp1 ABB0A
3 reccl BB01B
4 3 3adant1 ABB01B
5 1 2 4 mul12d ABB0BA1B=AB1B
6 recid BB0B1B=1
7 6 3adant1 ABB0B1B=1
8 7 oveq2d ABB0AB1B=A1
9 2 mulridd ABB0A1=A
10 5 8 9 3eqtrd ABB0BA1B=A
11 2 4 mulcld ABB0A1B
12 3simpc ABB0BB0
13 divmul AA1BBB0AB=A1BBA1B=A
14 2 11 12 13 syl3anc ABB0AB=A1BBA1B=A
15 10 14 mpbird ABB0AB=A1B