Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | divrec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | simp1 | |
|
3 | reccl | |
|
4 | 3 | 3adant1 | |
5 | 1 2 4 | mul12d | |
6 | recid | |
|
7 | 6 | 3adant1 | |
8 | 7 | oveq2d | |
9 | 2 | mulridd | |
10 | 5 8 9 | 3eqtrd | |
11 | 2 4 | mulcld | |
12 | 3simpc | |
|
13 | divmul | |
|
14 | 2 11 12 13 | syl3anc | |
15 | 10 14 | mpbird | |