Metamath Proof Explorer


Theorem djhunssN

Description: Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses djhunss.h H=LHypK
djhunss.u U=DVecHKW
djhunss.v V=BaseU
djhunss.j ˙=joinHKW
djhunss.k φKHLWH
djhunss.x φXV
djhunss.y φYV
Assertion djhunssN φXYX˙Y

Proof

Step Hyp Ref Expression
1 djhunss.h H=LHypK
2 djhunss.u U=DVecHKW
3 djhunss.v V=BaseU
4 djhunss.j ˙=joinHKW
5 djhunss.k φKHLWH
6 djhunss.x φXV
7 djhunss.y φYV
8 1 2 5 dvhlmod φULMod
9 6 7 unssd φXYV
10 eqid LSpanU=LSpanU
11 3 10 lspssid ULModXYVXYLSpanUXY
12 8 9 11 syl2anc φXYLSpanUXY
13 1 2 3 10 4 5 6 7 djhspss φLSpanUXYX˙Y
14 12 13 sstrd φXYX˙Y