Metamath Proof Explorer


Theorem djuss

Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022)

Ref Expression
Assertion djuss A⊔︀B1𝑜×AB

Proof

Step Hyp Ref Expression
1 djur xA⊔︀ByAx=inlyyBx=inry
2 simpr yAx=inlyx=inly
3 df-inl inl=xVx
4 opeq2 x=yx=y
5 elex yAyV
6 opex yV
7 6 a1i yAyV
8 3 4 5 7 fvmptd3 yAinly=y
9 8 adantr yAx=inlyinly=y
10 2 9 eqtrd yAx=inlyx=y
11 elun1 yAyAB
12 0ex V
13 12 prid1 1𝑜
14 11 13 jctil yA1𝑜yAB
15 14 adantr yAx=inly1𝑜yAB
16 opelxp y1𝑜×AB1𝑜yAB
17 15 16 sylibr yAx=inlyy1𝑜×AB
18 10 17 eqeltrd yAx=inlyx1𝑜×AB
19 18 rexlimiva yAx=inlyx1𝑜×AB
20 simpr yBx=inryx=inry
21 df-inr inr=xV1𝑜x
22 opeq2 x=y1𝑜x=1𝑜y
23 elex yByV
24 opex 1𝑜yV
25 24 a1i yB1𝑜yV
26 21 22 23 25 fvmptd3 yBinry=1𝑜y
27 26 adantr yBx=inryinry=1𝑜y
28 20 27 eqtrd yBx=inryx=1𝑜y
29 elun2 yByAB
30 29 adantr yBx=inryyAB
31 1oex 1𝑜V
32 31 prid2 1𝑜1𝑜
33 30 32 jctil yBx=inry1𝑜1𝑜yAB
34 opelxp 1𝑜y1𝑜×AB1𝑜1𝑜yAB
35 33 34 sylibr yBx=inry1𝑜y1𝑜×AB
36 28 35 eqeltrd yBx=inryx1𝑜×AB
37 36 rexlimiva yBx=inryx1𝑜×AB
38 19 37 jaoi yAx=inlyyBx=inryx1𝑜×AB
39 1 38 syl xA⊔︀Bx1𝑜×AB
40 39 ssriv A⊔︀B1𝑜×AB