Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | djuss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djur | |
|
2 | simpr | |
|
3 | df-inl | |
|
4 | opeq2 | |
|
5 | elex | |
|
6 | opex | |
|
7 | 6 | a1i | |
8 | 3 4 5 7 | fvmptd3 | |
9 | 8 | adantr | |
10 | 2 9 | eqtrd | |
11 | elun1 | |
|
12 | 0ex | |
|
13 | 12 | prid1 | |
14 | 11 13 | jctil | |
15 | 14 | adantr | |
16 | opelxp | |
|
17 | 15 16 | sylibr | |
18 | 10 17 | eqeltrd | |
19 | 18 | rexlimiva | |
20 | simpr | |
|
21 | df-inr | |
|
22 | opeq2 | |
|
23 | elex | |
|
24 | opex | |
|
25 | 24 | a1i | |
26 | 21 22 23 25 | fvmptd3 | |
27 | 26 | adantr | |
28 | 20 27 | eqtrd | |
29 | elun2 | |
|
30 | 29 | adantr | |
31 | 1oex | |
|
32 | 31 | prid2 | |
33 | 30 32 | jctil | |
34 | opelxp | |
|
35 | 33 34 | sylibr | |
36 | 28 35 | eqeltrd | |
37 | 36 | rexlimiva | |
38 | 19 37 | jaoi | |
39 | 1 38 | syl | |
40 | 39 | ssriv | |