Metamath Proof Explorer


Theorem dmatid

Description: The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A=NMatR
dmatid.b B=BaseA
dmatid.0 0˙=0R
dmatid.d D=NDMatR
Assertion dmatid NFinRRing1AD

Proof

Step Hyp Ref Expression
1 dmatid.a A=NMatR
2 dmatid.b B=BaseA
3 dmatid.0 0˙=0R
4 dmatid.d D=NDMatR
5 1 matring NFinRRingARing
6 eqid 1A=1A
7 2 6 ringidcl ARing1AB
8 5 7 syl NFinRRing1AB
9 eqid 1R=1R
10 simpl NFinRRingNFin
11 10 adantr NFinRRingiNjNNFin
12 simpr NFinRRingRRing
13 12 adantr NFinRRingiNjNRRing
14 simpl iNjNiN
15 14 adantl NFinRRingiNjNiN
16 simpr iNjNjN
17 16 adantl NFinRRingiNjNjN
18 1 9 3 11 13 15 17 6 mat1ov NFinRRingiNjNi1Aj=ifi=j1R0˙
19 ifnefalse ijifi=j1R0˙=0˙
20 18 19 sylan9eq NFinRRingiNjNiji1Aj=0˙
21 20 ex NFinRRingiNjNiji1Aj=0˙
22 21 ralrimivva NFinRRingiNjNiji1Aj=0˙
23 1 2 3 4 dmatel NFinRRing1AD1ABiNjNiji1Aj=0˙
24 8 22 23 mpbir2and NFinRRing1AD