Metamath Proof Explorer


Theorem dmrelrnrel

Description: A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmrelrnrel.x xφ
dmrelrnrel.y yφ
dmrelrnrel.i φxAyAxRyFxSFy
dmrelrnrel.b φBA
dmrelrnrel.c φCA
dmrelrnrel.r φBRC
Assertion dmrelrnrel φFBSFC

Proof

Step Hyp Ref Expression
1 dmrelrnrel.x xφ
2 dmrelrnrel.y yφ
3 dmrelrnrel.i φxAyAxRyFxSFy
4 dmrelrnrel.b φBA
5 dmrelrnrel.c φCA
6 dmrelrnrel.r φBRC
7 id φφ
8 7 4 5 jca31 φφBACA
9 nfv yBA
10 2 9 nfan yφBA
11 nfv yCA
12 10 11 nfan yφBACA
13 nfv yBRCFBSFC
14 12 13 nfim yφBACABRCFBSFC
15 9 14 nfim yBAφBACABRCFBSFC
16 eleq1 y=CyACA
17 16 anbi2d y=CφBAyAφBACA
18 breq2 y=CBRyBRC
19 fveq2 y=CFy=FC
20 19 breq2d y=CFBSFyFBSFC
21 18 20 imbi12d y=CBRyFBSFyBRCFBSFC
22 17 21 imbi12d y=CφBAyABRyFBSFyφBACABRCFBSFC
23 22 imbi2d y=CBAφBAyABRyFBSFyBAφBACABRCFBSFC
24 nfv xBA
25 1 24 nfan xφBA
26 nfv xyA
27 25 26 nfan xφBAyA
28 nfv xBRyFBSFy
29 27 28 nfim xφBAyABRyFBSFy
30 eleq1 x=BxABA
31 30 anbi2d x=BφxAφBA
32 31 anbi1d x=BφxAyAφBAyA
33 breq1 x=BxRyBRy
34 fveq2 x=BFx=FB
35 34 breq1d x=BFxSFyFBSFy
36 33 35 imbi12d x=BxRyFxSFyBRyFBSFy
37 32 36 imbi12d x=BφxAyAxRyFxSFyφBAyABRyFBSFy
38 3 r19.21bi φxAyAxRyFxSFy
39 38 r19.21bi φxAyAxRyFxSFy
40 29 37 39 vtoclg1f BAφBAyABRyFBSFy
41 15 23 40 vtoclg1f CABAφBACABRCFBSFC
42 5 4 41 sylc φφBACABRCFBSFC
43 8 6 42 mp2d φFBSFC