Metamath Proof Explorer


Theorem dmsigagen

Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion dmsigagen dom𝛔=V

Proof

Step Hyp Ref Expression
1 vuniex jV
2 pwsiga jV𝒫jsigAlgebraj
3 1 2 ax-mp 𝒫jsigAlgebraj
4 pwuni j𝒫j
5 sseq2 s=𝒫jjsj𝒫j
6 5 rspcev 𝒫jsigAlgebrajj𝒫jssigAlgebrajjs
7 3 4 6 mp2an ssigAlgebrajjs
8 rabn0 ssigAlgebraj|jsssigAlgebrajjs
9 7 8 mpbir ssigAlgebraj|js
10 intex ssigAlgebraj|jsssigAlgebraj|jsV
11 9 10 mpbi ssigAlgebraj|jsV
12 df-sigagen 𝛔=jVssigAlgebraj|js
13 11 12 dmmpti dom𝛔=V