Metamath Proof Explorer


Theorem dmtrclfvRP

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Assertion dmtrclfvRP RVdomt+R=domR

Proof

Step Hyp Ref Expression
1 trclfvdecomr RVt+R=Rt+RR
2 1 dmeqd RVdomt+R=domRt+RR
3 dmun domRt+RR=domRdomt+RR
4 dmcoss domt+RRdomR
5 ssequn2 domt+RRdomRdomRdomt+RR=domR
6 4 5 mpbi domRdomt+RR=domR
7 3 6 eqtri domRt+RR=domR
8 2 7 eqtrdi RVdomt+R=domR