Metamath Proof Explorer


Theorem dmtrclfvRP

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Assertion dmtrclfvRP R V dom t+ R = dom R

Proof

Step Hyp Ref Expression
1 trclfvdecomr R V t+ R = R t+ R R
2 1 dmeqd R V dom t+ R = dom R t+ R R
3 dmun dom R t+ R R = dom R dom t+ R R
4 dmcoss dom t+ R R dom R
5 ssequn2 dom t+ R R dom R dom R dom t+ R R = dom R
6 4 5 mpbi dom R dom t+ R R = dom R
7 3 6 eqtri dom R t+ R R = dom R
8 2 7 eqtrdi R V dom t+ R = dom R