Metamath Proof Explorer


Theorem dochexmidlem4

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem4.pp φ p A
dochexmidlem4.qq φ q A
dochexmidlem4.z 0 ˙ = 0 U
dochexmidlem4.m M = X ˙ p
dochexmidlem4.xn φ X 0 ˙
dochexmidlem4.pl φ q ˙ X M
Assertion dochexmidlem4 φ p X ˙ ˙ X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem4.pp φ p A
12 dochexmidlem4.qq φ q A
13 dochexmidlem4.z 0 ˙ = 0 U
14 dochexmidlem4.m M = X ˙ p
15 dochexmidlem4.xn φ X 0 ˙
16 dochexmidlem4.pl φ q ˙ X M
17 1 3 9 dvhlmod φ U LMod
18 5 8 17 11 lsatlssel φ p S
19 inss2 ˙ X M M
20 16 19 sstrdi φ q M
21 20 14 sseqtrdi φ q X ˙ p
22 13 5 7 8 17 10 18 12 15 21 lsmsat φ r A r X q r ˙ p
23 9 3ad2ant1 φ r A r X q r ˙ p K HL W H
24 10 3ad2ant1 φ r A r X q r ˙ p X S
25 11 3ad2ant1 φ r A r X q r ˙ p p A
26 12 3ad2ant1 φ r A r X q r ˙ p q A
27 simp2 φ r A r X q r ˙ p r A
28 inss1 ˙ X M ˙ X
29 16 28 sstrdi φ q ˙ X
30 29 3ad2ant1 φ r A r X q r ˙ p q ˙ X
31 simp3l φ r A r X q r ˙ p r X
32 simp3r φ r A r X q r ˙ p q r ˙ p
33 1 2 3 4 5 6 7 8 23 24 25 26 27 30 31 32 dochexmidlem3 φ r A r X q r ˙ p p X ˙ ˙ X
34 33 rexlimdv3a φ r A r X q r ˙ p p X ˙ ˙ X
35 22 34 mpd φ p X ˙ ˙ X