Metamath Proof Explorer


Theorem dochkrshp3

Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochkrshp3.h H=LHypK
dochkrshp3.o ˙=ocHKW
dochkrshp3.u U=DVecHKW
dochkrshp3.v V=BaseU
dochkrshp3.f F=LFnlU
dochkrshp3.l L=LKerU
dochkrshp3.k φKHLWH
dochkrshp3.g φGF
Assertion dochkrshp3 φ˙˙LGV˙˙LG=LGLGV

Proof

Step Hyp Ref Expression
1 dochkrshp3.h H=LHypK
2 dochkrshp3.o ˙=ocHKW
3 dochkrshp3.u U=DVecHKW
4 dochkrshp3.v V=BaseU
5 dochkrshp3.f F=LFnlU
6 dochkrshp3.l L=LKerU
7 dochkrshp3.k φKHLWH
8 dochkrshp3.g φGF
9 eqid LSHypU=LSHypU
10 1 2 3 4 9 5 6 7 8 dochkrshp2 φ˙˙LGV˙˙LG=LGLGLSHypU
11 1 3 7 dvhlvec φULVec
12 4 9 5 6 11 8 lkrshp4 φLGVLGLSHypU
13 12 anbi2d φ˙˙LG=LGLGV˙˙LG=LGLGLSHypU
14 10 13 bitr4d φ˙˙LGV˙˙LG=LGLGV