Metamath Proof Explorer


Theorem dp2ltc

Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2lt.a A0
dp2lt.b B+
dp2ltc.c C0
dp2ltc.d D+
dp2ltc.s B<10
dp2ltc.l A<C
Assertion dp2ltc Could not format assertion : No typesetting found for |- _ A B < _ C D with typecode |-

Proof

Step Hyp Ref Expression
1 dp2lt.a A0
2 dp2lt.b B+
3 dp2ltc.c C0
4 dp2ltc.d D+
5 dp2ltc.s B<10
6 dp2ltc.l A<C
7 rpssre +
8 7 2 sselii B
9 10re 10
10 10pos 0<10
11 elrp 10+100<10
12 9 10 11 mpbir2an 10+
13 divlt1lt B10+B10<1B<10
14 8 12 13 mp2an B10<1B<10
15 5 14 mpbir B10<1
16 9 10 gt0ne0ii 100
17 8 9 16 redivcli B10
18 1re 1
19 1 nn0rei A
20 ltadd2 B101AB10<1A+B10<A+1
21 17 18 19 20 mp3an B10<1A+B10<A+1
22 15 21 mpbi A+B10<A+1
23 1 nn0zi A
24 3 nn0zi C
25 zltp1le ACA<CA+1C
26 23 24 25 mp2an A<CA+1C
27 6 26 mpbi A+1C
28 19 17 readdcli A+B10
29 19 18 readdcli A+1
30 3 nn0rei C
31 28 29 30 ltletri A+B10<A+1A+1CA+B10<C
32 22 27 31 mp2an A+B10<C
33 4 12 pm3.2i D+10+
34 rpdivcl D+10+D10+
35 33 34 ax-mp D10+
36 ltaddrp CD10+C<C+D10
37 30 35 36 mp2an C<C+D10
38 7 4 sselii D
39 38 9 16 redivcli D10
40 30 39 readdcli C+D10
41 28 30 40 lttri A+B10<CC<C+D10A+B10<C+D10
42 32 37 41 mp2an A+B10<C+D10
43 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
44 df-dp2 Could not format _ C D = ( C + ( D / ; 1 0 ) ) : No typesetting found for |- _ C D = ( C + ( D / ; 1 0 ) ) with typecode |-
45 42 43 44 3brtr4i Could not format _ A B < _ C D : No typesetting found for |- _ A B < _ C D with typecode |-