Metamath Proof Explorer


Theorem dpjcntz

Description: The two subgroups that appear in dpjval commute. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjlem.3 φXI
dpjcntz.z Z=CntzG
Assertion dpjcntz φSXZGDProdSIX

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjlem.3 φXI
4 dpjcntz.z Z=CntzG
5 1 2 3 dpjlem φGDProdSX=SX
6 1 2 dprdf2 φS:ISubGrpG
7 disjdif XIX=
8 7 a1i φXIX=
9 undif2 XIX=XI
10 3 snssd φXI
11 ssequn1 XIXI=I
12 10 11 sylib φXI=I
13 9 12 eqtr2id φI=XIX
14 eqid 0G=0G
15 6 8 13 4 14 dmdprdsplit φGdomDProdSGdomDProdSXGdomDProdSIXGDProdSXZGDProdSIXGDProdSXGDProdSIX=0G
16 1 15 mpbid φGdomDProdSXGdomDProdSIXGDProdSXZGDProdSIXGDProdSXGDProdSIX=0G
17 16 simp2d φGDProdSXZGDProdSIX
18 5 17 eqsstrrd φSXZGDProdSIX