Metamath Proof Explorer


Theorem dpjlem

Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjlem.3 φXI
Assertion dpjlem φGDProdSX=SX

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjlem.3 φXI
4 1 2 dprdf2 φS:ISubGrpG
5 4 ffnd φSFnI
6 fnressn SFnIXISX=XSX
7 5 3 6 syl2anc φSX=XSX
8 7 oveq2d φGDProdSX=GDProdXSX
9 4 3 ffvelcdmd φSXSubGrpG
10 dprdsn XISXSubGrpGGdomDProdXSXGDProdXSX=SX
11 3 9 10 syl2anc φGdomDProdXSXGDProdXSX=SX
12 11 simprd φGDProdXSX=SX
13 8 12 eqtrd φGDProdSX=SX