Metamath Proof Explorer


Theorem dprd2db

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 φ Rel A
dprd2d.2 φ S : A SubGrp G
dprd2d.3 φ dom A I
dprd2d.4 φ i I G dom DProd j A i i S j
dprd2d.5 φ G dom DProd i I G DProd j A i i S j
dprd2d.k K = mrCls SubGrp G
Assertion dprd2db φ G DProd S = G DProd i I G DProd j A i i S j

Proof

Step Hyp Ref Expression
1 dprd2d.1 φ Rel A
2 dprd2d.2 φ S : A SubGrp G
3 dprd2d.3 φ dom A I
4 dprd2d.4 φ i I G dom DProd j A i i S j
5 dprd2d.5 φ G dom DProd i I G DProd j A i i S j
6 dprd2d.k K = mrCls SubGrp G
7 1 2 3 4 5 6 dprd2da φ G dom DProd S
8 6 dprdspan G dom DProd S G DProd S = K ran S
9 7 8 syl φ G DProd S = K ran S
10 relssres Rel A dom A I A I = A
11 1 3 10 syl2anc φ A I = A
12 11 imaeq2d φ S A I = S A
13 ffn S : A SubGrp G S Fn A
14 fnima S Fn A S A = ran S
15 2 13 14 3syl φ S A = ran S
16 12 15 eqtr2d φ ran S = S A I
17 16 unieqd φ ran S = S A I
18 17 fveq2d φ K ran S = K S A I
19 ssidd φ I I
20 1 2 3 4 5 6 19 dprd2dlem1 φ K S A I = G DProd i I G DProd j A i i S j
21 9 18 20 3eqtrd φ G DProd S = G DProd i I G DProd j A i i S j