Metamath Proof Explorer


Theorem dprd2da

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 φRelA
dprd2d.2 φS:ASubGrpG
dprd2d.3 φdomAI
dprd2d.4 φiIGdomDProdjAiiSj
dprd2d.5 φGdomDProdiIGDProdjAiiSj
dprd2d.k K=mrClsSubGrpG
Assertion dprd2da φGdomDProdS

Proof

Step Hyp Ref Expression
1 dprd2d.1 φRelA
2 dprd2d.2 φS:ASubGrpG
3 dprd2d.3 φdomAI
4 dprd2d.4 φiIGdomDProdjAiiSj
5 dprd2d.5 φGdomDProdiIGDProdjAiiSj
6 dprd2d.k K=mrClsSubGrpG
7 eqid CntzG=CntzG
8 eqid 0G=0G
9 dprdgrp GdomDProdiIGDProdjAiiSjGGrp
10 5 9 syl φGGrp
11 resiun2 AiIi=iIAi
12 iunid iIi=I
13 12 reseq2i AiIi=AI
14 11 13 eqtr3i iIAi=AI
15 relssres RelAdomAIAI=A
16 1 3 15 syl2anc φAI=A
17 14 16 eqtrid φiIAi=A
18 ovex GDProdjAiiSjV
19 eqid iIGDProdjAiiSj=iIGDProdjAiiSj
20 18 19 dmmpti domiIGDProdjAiiSj=I
21 reldmdprd ReldomDProd
22 21 brrelex2i GdomDProdiIGDProdjAiiSjiIGDProdjAiiSjV
23 dmexg iIGDProdjAiiSjVdomiIGDProdjAiiSjV
24 5 22 23 3syl φdomiIGDProdjAiiSjV
25 20 24 eqeltrrid φIV
26 ressn Ai=i×Ai
27 vsnex iV
28 ovex iSjV
29 eqid jAiiSj=jAiiSj
30 28 29 dmmpti domjAiiSj=Ai
31 21 brrelex2i GdomDProdjAiiSjjAiiSjV
32 dmexg jAiiSjVdomjAiiSjV
33 4 31 32 3syl φiIdomjAiiSjV
34 30 33 eqeltrrid φiIAiV
35 xpexg iVAiVi×AiV
36 27 34 35 sylancr φiIi×AiV
37 26 36 eqeltrid φiIAiV
38 37 ralrimiva φiIAiV
39 iunexg IViIAiViIAiV
40 25 38 39 syl2anc φiIAiV
41 17 40 eqeltrrd φAV
42 sneq i=1stxi=1stx
43 42 imaeq2d i=1stxAi=A1stx
44 oveq1 i=1stxiSj=1stxSj
45 43 44 mpteq12dv i=1stxjAiiSj=jA1stx1stxSj
46 45 breq2d i=1stxGdomDProdjAiiSjGdomDProdjA1stx1stxSj
47 4 ralrimiva φiIGdomDProdjAiiSj
48 47 adantr φxAiIGdomDProdjAiiSj
49 3 adantr φxAdomAI
50 1stdm RelAxA1stxdomA
51 1 50 sylan φxA1stxdomA
52 49 51 sseldd φxA1stxI
53 46 48 52 rspcdva φxAGdomDProdjA1stx1stxSj
54 53 3ad2antr1 φxAyAxyGdomDProdjA1stx1stxSj
55 54 adantr φxAyAxy1stx=1styGdomDProdjA1stx1stxSj
56 ovex 1stxSjV
57 eqid jA1stx1stxSj=jA1stx1stxSj
58 56 57 dmmpti domjA1stx1stxSj=A1stx
59 58 a1i φxAyAxy1stx=1stydomjA1stx1stxSj=A1stx
60 1st2nd RelAxAx=1stx2ndx
61 1 60 sylan φxAx=1stx2ndx
62 simpr φxAxA
63 61 62 eqeltrrd φxA1stx2ndxA
64 df-br 1stxA2ndx1stx2ndxA
65 63 64 sylibr φxA1stxA2ndx
66 1 adantr φxARelA
67 elrelimasn RelA2ndxA1stx1stxA2ndx
68 66 67 syl φxA2ndxA1stx1stxA2ndx
69 65 68 mpbird φxA2ndxA1stx
70 69 3ad2antr1 φxAyAxy2ndxA1stx
71 70 adantr φxAyAxy1stx=1sty2ndxA1stx
72 1 adantr φxAyAxyRelA
73 simpr2 φxAyAxyyA
74 1st2nd RelAyAy=1sty2ndy
75 72 73 74 syl2anc φxAyAxyy=1sty2ndy
76 75 73 eqeltrrd φxAyAxy1sty2ndyA
77 df-br 1styA2ndy1sty2ndyA
78 76 77 sylibr φxAyAxy1styA2ndy
79 elrelimasn RelA2ndyA1sty1styA2ndy
80 72 79 syl φxAyAxy2ndyA1sty1styA2ndy
81 78 80 mpbird φxAyAxy2ndyA1sty
82 81 adantr φxAyAxy1stx=1sty2ndyA1sty
83 simpr φxAyAxy1stx=1sty1stx=1sty
84 83 sneqd φxAyAxy1stx=1sty1stx=1sty
85 84 imaeq2d φxAyAxy1stx=1styA1stx=A1sty
86 82 85 eleqtrrd φxAyAxy1stx=1sty2ndyA1stx
87 simplr3 φxAyAxy1stx=1styxy
88 simpr1 φxAyAxyxA
89 72 88 60 syl2anc φxAyAxyx=1stx2ndx
90 89 75 eqeq12d φxAyAxyx=y1stx2ndx=1sty2ndy
91 fvex 1stxV
92 fvex 2ndxV
93 91 92 opth 1stx2ndx=1sty2ndy1stx=1sty2ndx=2ndy
94 90 93 bitrdi φxAyAxyx=y1stx=1sty2ndx=2ndy
95 94 baibd φxAyAxy1stx=1styx=y2ndx=2ndy
96 95 necon3bid φxAyAxy1stx=1styxy2ndx2ndy
97 87 96 mpbid φxAyAxy1stx=1sty2ndx2ndy
98 55 59 71 86 97 7 dprdcntz φxAyAxy1stx=1styjA1stx1stxSj2ndxCntzGjA1stx1stxSj2ndy
99 df-ov 1stxS2ndx=S1stx2ndx
100 oveq2 j=2ndx1stxSj=1stxS2ndx
101 100 57 56 fvmpt3i 2ndxA1stxjA1stx1stxSj2ndx=1stxS2ndx
102 70 101 syl φxAyAxyjA1stx1stxSj2ndx=1stxS2ndx
103 89 fveq2d φxAyAxySx=S1stx2ndx
104 99 102 103 3eqtr4a φxAyAxyjA1stx1stxSj2ndx=Sx
105 104 adantr φxAyAxy1stx=1styjA1stx1stxSj2ndx=Sx
106 83 oveq1d φxAyAxy1stx=1sty1stxSj=1stySj
107 85 106 mpteq12dv φxAyAxy1stx=1styjA1stx1stxSj=jA1sty1stySj
108 107 fveq1d φxAyAxy1stx=1styjA1stx1stxSj2ndy=jA1sty1stySj2ndy
109 df-ov 1styS2ndy=S1sty2ndy
110 oveq2 j=2ndy1stySj=1styS2ndy
111 eqid jA1sty1stySj=jA1sty1stySj
112 ovex 1stySjV
113 110 111 112 fvmpt3i 2ndyA1styjA1sty1stySj2ndy=1styS2ndy
114 81 113 syl φxAyAxyjA1sty1stySj2ndy=1styS2ndy
115 75 fveq2d φxAyAxySy=S1sty2ndy
116 109 114 115 3eqtr4a φxAyAxyjA1sty1stySj2ndy=Sy
117 116 adantr φxAyAxy1stx=1styjA1sty1stySj2ndy=Sy
118 108 117 eqtrd φxAyAxy1stx=1styjA1stx1stxSj2ndy=Sy
119 118 fveq2d φxAyAxy1stx=1styCntzGjA1stx1stxSj2ndy=CntzGSy
120 98 105 119 3sstr3d φxAyAxy1stx=1stySxCntzGSy
121 1 2 3 4 5 6 dprd2dlem2 φxASxGDProdjA1stx1stxSj
122 45 oveq2d i=1stxGDProdjAiiSj=GDProdjA1stx1stxSj
123 122 19 18 fvmpt3i 1stxIiIGDProdjAiiSj1stx=GDProdjA1stx1stxSj
124 52 123 syl φxAiIGDProdjAiiSj1stx=GDProdjA1stx1stxSj
125 121 124 sseqtrrd φxASxiIGDProdjAiiSj1stx
126 125 3ad2antr1 φxAyAxySxiIGDProdjAiiSj1stx
127 126 adantr φxAyAxy1stx1stySxiIGDProdjAiiSj1stx
128 5 ad2antrr φxAyAxy1stx1styGdomDProdiIGDProdjAiiSj
129 20 a1i φxAyAxy1stx1stydomiIGDProdjAiiSj=I
130 52 3ad2antr1 φxAyAxy1stxI
131 130 adantr φxAyAxy1stx1sty1stxI
132 3 adantr φxAyAxydomAI
133 1stdm RelAyA1stydomA
134 72 73 133 syl2anc φxAyAxy1stydomA
135 132 134 sseldd φxAyAxy1styI
136 135 adantr φxAyAxy1stx1sty1styI
137 simpr φxAyAxy1stx1sty1stx1sty
138 128 129 131 136 137 7 dprdcntz φxAyAxy1stx1styiIGDProdjAiiSj1stxCntzGiIGDProdjAiiSj1sty
139 sneq i=1styi=1sty
140 139 imaeq2d i=1styAi=A1sty
141 oveq1 i=1styiSj=1stySj
142 140 141 mpteq12dv i=1styjAiiSj=jA1sty1stySj
143 142 oveq2d i=1styGDProdjAiiSj=GDProdjA1sty1stySj
144 143 19 18 fvmpt3i 1styIiIGDProdjAiiSj1sty=GDProdjA1sty1stySj
145 135 144 syl φxAyAxyiIGDProdjAiiSj1sty=GDProdjA1sty1stySj
146 145 fveq2d φxAyAxyCntzGiIGDProdjAiiSj1sty=CntzGGDProdjA1sty1stySj
147 eqid BaseG=BaseG
148 147 dprdssv GDProdjA1sty1stySjBaseG
149 142 breq2d i=1styGdomDProdjAiiSjGdomDProdjA1sty1stySj
150 47 adantr φxAyAxyiIGdomDProdjAiiSj
151 149 150 135 rspcdva φxAyAxyGdomDProdjA1sty1stySj
152 112 111 dmmpti domjA1sty1stySj=A1sty
153 152 a1i φxAyAxydomjA1sty1stySj=A1sty
154 151 153 81 dprdub φxAyAxyjA1sty1stySj2ndyGDProdjA1sty1stySj
155 116 154 eqsstrrd φxAyAxySyGDProdjA1sty1stySj
156 147 7 cntz2ss GDProdjA1sty1stySjBaseGSyGDProdjA1sty1stySjCntzGGDProdjA1sty1stySjCntzGSy
157 148 155 156 sylancr φxAyAxyCntzGGDProdjA1sty1stySjCntzGSy
158 146 157 eqsstrd φxAyAxyCntzGiIGDProdjAiiSj1styCntzGSy
159 158 adantr φxAyAxy1stx1styCntzGiIGDProdjAiiSj1styCntzGSy
160 138 159 sstrd φxAyAxy1stx1styiIGDProdjAiiSj1stxCntzGSy
161 127 160 sstrd φxAyAxy1stx1stySxCntzGSy
162 120 161 pm2.61dane φxAyAxySxCntzGSy
163 10 adantr φxAGGrp
164 147 subgacs GGrpSubGrpGACSBaseG
165 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
166 163 164 165 3syl φxASubGrpGMooreBaseG
167 16 adantr φxAAI=A
168 undif2 1stxI1stx=1stxI
169 52 snssd φxA1stxI
170 ssequn1 1stxI1stxI=I
171 169 170 sylib φxA1stxI=I
172 168 171 eqtr2id φxAI=1stxI1stx
173 172 reseq2d φxAAI=A1stxI1stx
174 167 173 eqtr3d φxAA=A1stxI1stx
175 resundi A1stxI1stx=A1stxAI1stx
176 174 175 eqtrdi φxAA=A1stxAI1stx
177 176 difeq1d φxAAx=A1stxAI1stxx
178 difundir A1stxAI1stxx=A1stxxAI1stxx
179 177 178 eqtrdi φxAAx=A1stxxAI1stxx
180 neirr ¬1stx1stx
181 61 eleq1d φxAxAI1stx1stx2ndxAI1stx
182 df-br 1stxAI1stx2ndx1stx2ndxAI1stx
183 92 brresi 1stxAI1stx2ndx1stxI1stx1stxA2ndx
184 183 simplbi 1stxAI1stx2ndx1stxI1stx
185 eldifsni 1stxI1stx1stx1stx
186 184 185 syl 1stxAI1stx2ndx1stx1stx
187 182 186 sylbir 1stx2ndxAI1stx1stx1stx
188 181 187 syl6bi φxAxAI1stx1stx1stx
189 180 188 mtoi φxA¬xAI1stx
190 disjsn AI1stxx=¬xAI1stx
191 189 190 sylibr φxAAI1stxx=
192 disj3 AI1stxx=AI1stx=AI1stxx
193 191 192 sylib φxAAI1stx=AI1stxx
194 193 eqcomd φxAAI1stxx=AI1stx
195 194 uneq2d φxAA1stxxAI1stxx=A1stxxAI1stx
196 179 195 eqtrd φxAAx=A1stxxAI1stx
197 196 imaeq2d φxASAx=SA1stxxAI1stx
198 imaundi SA1stxxAI1stx=SA1stxxSAI1stx
199 197 198 eqtrdi φxASAx=SA1stxxSAI1stx
200 199 unieqd φxASAx=SA1stxxSAI1stx
201 uniun SA1stxxSAI1stx=SA1stxxSAI1stx
202 200 201 eqtrdi φxASAx=SA1stxxSAI1stx
203 imassrn SA1stxxranS
204 2 frnd φranSSubGrpG
205 204 adantr φxAranSSubGrpG
206 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
207 166 206 syl φxASubGrpG𝒫BaseG
208 205 207 sstrd φxAranS𝒫BaseG
209 203 208 sstrid φxASA1stxx𝒫BaseG
210 sspwuni SA1stxx𝒫BaseGSA1stxxBaseG
211 209 210 sylib φxASA1stxxBaseG
212 166 6 211 mrcssidd φxASA1stxxKSA1stxx
213 imassrn SAI1stxranS
214 213 208 sstrid φxASAI1stx𝒫BaseG
215 sspwuni SAI1stx𝒫BaseGSAI1stxBaseG
216 214 215 sylib φxASAI1stxBaseG
217 166 6 216 mrcssidd φxASAI1stxKSAI1stx
218 unss12 SA1stxxKSA1stxxSAI1stxKSAI1stxSA1stxxSAI1stxKSA1stxxKSAI1stx
219 212 217 218 syl2anc φxASA1stxxSAI1stxKSA1stxxKSAI1stx
220 202 219 eqsstrd φxASAxKSA1stxxKSAI1stx
221 6 mrccl SubGrpGMooreBaseGSA1stxxBaseGKSA1stxxSubGrpG
222 166 211 221 syl2anc φxAKSA1stxxSubGrpG
223 6 mrccl SubGrpGMooreBaseGSAI1stxBaseGKSAI1stxSubGrpG
224 166 216 223 syl2anc φxAKSAI1stxSubGrpG
225 eqid LSSumG=LSSumG
226 225 lsmunss KSA1stxxSubGrpGKSAI1stxSubGrpGKSA1stxxKSAI1stxKSA1stxxLSSumGKSAI1stx
227 222 224 226 syl2anc φxAKSA1stxxKSAI1stxKSA1stxxLSSumGKSAI1stx
228 220 227 sstrd φxASAxKSA1stxxLSSumGKSAI1stx
229 difss A1stxxA1stx
230 ressn A1stx=1stx×A1stx
231 229 230 sseqtri A1stxx1stx×A1stx
232 imass2 A1stxx1stx×A1stxSA1stxxS1stx×A1stx
233 231 232 ax-mp SA1stxxS1stx×A1stx
234 ovex 1stxSiV
235 oveq2 j=i1stxSj=1stxSi
236 57 235 elrnmpt1s iA1stx1stxSiV1stxSiranjA1stx1stxSj
237 234 236 mpan2 iA1stx1stxSiranjA1stx1stxSj
238 237 rgen iA1stx1stxSiranjA1stx1stxSj
239 238 a1i φxAiA1stx1stxSiranjA1stx1stxSj
240 oveq1 y=1stxySi=1stxSi
241 240 eleq1d y=1stxySiranjA1stx1stxSj1stxSiranjA1stx1stxSj
242 241 ralbidv y=1stxiA1stxySiranjA1stx1stxSjiA1stx1stxSiranjA1stx1stxSj
243 91 242 ralsn y1stxiA1stxySiranjA1stx1stxSjiA1stx1stxSiranjA1stx1stxSj
244 239 243 sylibr φxAy1stxiA1stxySiranjA1stx1stxSj
245 2 adantr φxAS:ASubGrpG
246 245 ffund φxAFunS
247 resss A1stxA
248 230 247 eqsstrri 1stx×A1stxA
249 245 fdmd φxAdomS=A
250 248 249 sseqtrrid φxA1stx×A1stxdomS
251 funimassov FunS1stx×A1stxdomSS1stx×A1stxranjA1stx1stxSjy1stxiA1stxySiranjA1stx1stxSj
252 246 250 251 syl2anc φxAS1stx×A1stxranjA1stx1stxSjy1stxiA1stxySiranjA1stx1stxSj
253 244 252 mpbird φxAS1stx×A1stxranjA1stx1stxSj
254 233 253 sstrid φxASA1stxxranjA1stx1stxSj
255 254 unissd φxASA1stxxranjA1stx1stxSj
256 df-ov 1stxSj=S1stxj
257 2 ad2antrr φxAjA1stxS:ASubGrpG
258 elrelimasn RelAjA1stx1stxAj
259 66 258 syl φxAjA1stx1stxAj
260 259 biimpa φxAjA1stx1stxAj
261 df-br 1stxAj1stxjA
262 260 261 sylib φxAjA1stx1stxjA
263 257 262 ffvelcdmd φxAjA1stxS1stxjSubGrpG
264 256 263 eqeltrid φxAjA1stx1stxSjSubGrpG
265 264 fmpttd φxAjA1stx1stxSj:A1stxSubGrpG
266 265 frnd φxAranjA1stx1stxSjSubGrpG
267 266 207 sstrd φxAranjA1stx1stxSj𝒫BaseG
268 sspwuni ranjA1stx1stxSj𝒫BaseGranjA1stx1stxSjBaseG
269 267 268 sylib φxAranjA1stx1stxSjBaseG
270 166 6 255 269 mrcssd φxAKSA1stxxKranjA1stx1stxSj
271 6 dprdspan GdomDProdjA1stx1stxSjGDProdjA1stx1stxSj=KranjA1stx1stxSj
272 53 271 syl φxAGDProdjA1stx1stxSj=KranjA1stx1stxSj
273 270 272 sseqtrrd φxAKSA1stxxGDProdjA1stx1stxSj
274 18 19 fnmpti iIGDProdjAiiSjFnI
275 fnressn iIGDProdjAiiSjFnI1stxIiIGDProdjAiiSj1stx=1stxiIGDProdjAiiSj1stx
276 274 52 275 sylancr φxAiIGDProdjAiiSj1stx=1stxiIGDProdjAiiSj1stx
277 124 opeq2d φxA1stxiIGDProdjAiiSj1stx=1stxGDProdjA1stx1stxSj
278 277 sneqd φxA1stxiIGDProdjAiiSj1stx=1stxGDProdjA1stx1stxSj
279 276 278 eqtrd φxAiIGDProdjAiiSj1stx=1stxGDProdjA1stx1stxSj
280 279 oveq2d φxAGDProdiIGDProdjAiiSj1stx=GDProd1stxGDProdjA1stx1stxSj
281 dprdsubg GdomDProdjA1stx1stxSjGDProdjA1stx1stxSjSubGrpG
282 53 281 syl φxAGDProdjA1stx1stxSjSubGrpG
283 dprdsn 1stxIGDProdjA1stx1stxSjSubGrpGGdomDProd1stxGDProdjA1stx1stxSjGDProd1stxGDProdjA1stx1stxSj=GDProdjA1stx1stxSj
284 52 282 283 syl2anc φxAGdomDProd1stxGDProdjA1stx1stxSjGDProd1stxGDProdjA1stx1stxSj=GDProdjA1stx1stxSj
285 284 simprd φxAGDProd1stxGDProdjA1stx1stxSj=GDProdjA1stx1stxSj
286 280 285 eqtrd φxAGDProdiIGDProdjAiiSj1stx=GDProdjA1stx1stxSj
287 5 adantr φxAGdomDProdiIGDProdjAiiSj
288 20 a1i φxAdomiIGDProdjAiiSj=I
289 difss I1stxI
290 289 a1i φxAI1stxI
291 disjdif 1stxI1stx=
292 291 a1i φxA1stxI1stx=
293 287 288 169 290 292 7 dprdcntz2 φxAGDProdiIGDProdjAiiSj1stxCntzGGDProdiIGDProdjAiiSjI1stx
294 286 293 eqsstrrd φxAGDProdjA1stx1stxSjCntzGGDProdiIGDProdjAiiSjI1stx
295 4 adantlr φxAiIGdomDProdjAiiSj
296 66 245 49 295 287 6 290 dprd2dlem1 φxAKSAI1stx=GDProdiI1stxGDProdjAiiSj
297 resmpt I1stxIiIGDProdjAiiSjI1stx=iI1stxGDProdjAiiSj
298 289 297 ax-mp iIGDProdjAiiSjI1stx=iI1stxGDProdjAiiSj
299 298 oveq2i GDProdiIGDProdjAiiSjI1stx=GDProdiI1stxGDProdjAiiSj
300 296 299 eqtr4di φxAKSAI1stx=GDProdiIGDProdjAiiSjI1stx
301 300 fveq2d φxACntzGKSAI1stx=CntzGGDProdiIGDProdjAiiSjI1stx
302 294 301 sseqtrrd φxAGDProdjA1stx1stxSjCntzGKSAI1stx
303 273 302 sstrd φxAKSA1stxxCntzGKSAI1stx
304 225 7 lsmsubg KSA1stxxSubGrpGKSAI1stxSubGrpGKSA1stxxCntzGKSAI1stxKSA1stxxLSSumGKSAI1stxSubGrpG
305 222 224 303 304 syl3anc φxAKSA1stxxLSSumGKSAI1stxSubGrpG
306 6 mrcsscl SubGrpGMooreBaseGSAxKSA1stxxLSSumGKSAI1stxKSA1stxxLSSumGKSAI1stxSubGrpGKSAxKSA1stxxLSSumGKSAI1stx
307 166 228 305 306 syl3anc φxAKSAxKSA1stxxLSSumGKSAI1stx
308 sslin KSAxKSA1stxxLSSumGKSAI1stxSxKSAxSxKSA1stxxLSSumGKSAI1stx
309 307 308 syl φxASxKSAxSxKSA1stxxLSSumGKSAI1stx
310 2 ffvelcdmda φxASxSubGrpG
311 225 lsmlub KSA1stxxSubGrpGSxSubGrpGGDProdjA1stx1stxSjSubGrpGKSA1stxxGDProdjA1stx1stxSjSxGDProdjA1stx1stxSjKSA1stxxLSSumGSxGDProdjA1stx1stxSj
312 222 310 282 311 syl3anc φxAKSA1stxxGDProdjA1stx1stxSjSxGDProdjA1stx1stxSjKSA1stxxLSSumGSxGDProdjA1stx1stxSj
313 273 121 312 mpbi2and φxAKSA1stxxLSSumGSxGDProdjA1stx1stxSj
314 313 124 sseqtrrd φxAKSA1stxxLSSumGSxiIGDProdjAiiSj1stx
315 287 288 290 dprdres φxAGdomDProdiIGDProdjAiiSjI1stxGDProdiIGDProdjAiiSjI1stxGDProdiIGDProdjAiiSj
316 315 simpld φxAGdomDProdiIGDProdjAiiSjI1stx
317 6 dprdspan GdomDProdiIGDProdjAiiSjI1stxGDProdiIGDProdjAiiSjI1stx=KraniIGDProdjAiiSjI1stx
318 316 317 syl φxAGDProdiIGDProdjAiiSjI1stx=KraniIGDProdjAiiSjI1stx
319 df-ima iIGDProdjAiiSjI1stx=raniIGDProdjAiiSjI1stx
320 319 unieqi iIGDProdjAiiSjI1stx=raniIGDProdjAiiSjI1stx
321 320 fveq2i KiIGDProdjAiiSjI1stx=KraniIGDProdjAiiSjI1stx
322 318 321 eqtr4di φxAGDProdiIGDProdjAiiSjI1stx=KiIGDProdjAiiSjI1stx
323 300 322 eqtrd φxAKSAI1stx=KiIGDProdjAiiSjI1stx
324 eqimss KSAI1stx=KiIGDProdjAiiSjI1stxKSAI1stxKiIGDProdjAiiSjI1stx
325 323 324 syl φxAKSAI1stxKiIGDProdjAiiSjI1stx
326 ss2in KSA1stxxLSSumGSxiIGDProdjAiiSj1stxKSAI1stxKiIGDProdjAiiSjI1stxKSA1stxxLSSumGSxKSAI1stxiIGDProdjAiiSj1stxKiIGDProdjAiiSjI1stx
327 314 325 326 syl2anc φxAKSA1stxxLSSumGSxKSAI1stxiIGDProdjAiiSj1stxKiIGDProdjAiiSjI1stx
328 287 288 52 8 6 dprddisj φxAiIGDProdjAiiSj1stxKiIGDProdjAiiSjI1stx=0G
329 327 328 sseqtrd φxAKSA1stxxLSSumGSxKSAI1stx0G
330 225 lsmub2 KSA1stxxSubGrpGSxSubGrpGSxKSA1stxxLSSumGSx
331 222 310 330 syl2anc φxASxKSA1stxxLSSumGSx
332 8 subg0cl SxSubGrpG0GSx
333 310 332 syl φxA0GSx
334 331 333 sseldd φxA0GKSA1stxxLSSumGSx
335 8 subg0cl KSAI1stxSubGrpG0GKSAI1stx
336 224 335 syl φxA0GKSAI1stx
337 334 336 elind φxA0GKSA1stxxLSSumGSxKSAI1stx
338 337 snssd φxA0GKSA1stxxLSSumGSxKSAI1stx
339 329 338 eqssd φxAKSA1stxxLSSumGSxKSAI1stx=0G
340 incom KSA1stxxSx=SxKSA1stxx
341 69 101 syl φxAjA1stx1stxSj2ndx=1stxS2ndx
342 61 fveq2d φxASx=S1stx2ndx
343 99 341 342 3eqtr4a φxAjA1stx1stxSj2ndx=Sx
344 eqimss2 jA1stx1stxSj2ndx=SxSxjA1stx1stxSj2ndx
345 343 344 syl φxASxjA1stx1stxSj2ndx
346 eldifsn yA1stxxyA1stxyx
347 1 ad2antrr φxAyA1stxyxRelA
348 simprl φxAyA1stxyxyA1stx
349 247 348 sselid φxAyA1stxyxyA
350 347 349 74 syl2anc φxAyA1stxyxy=1sty2ndy
351 350 fveq2d φxAyA1stxyxSy=S1sty2ndy
352 351 109 eqtr4di φxAyA1stxyxSy=1styS2ndy
353 350 348 eqeltrrd φxAyA1stxyx1sty2ndyA1stx
354 fvex 2ndyV
355 354 opelresi 1sty2ndyA1stx1sty1stx1sty2ndyA
356 355 simplbi 1sty2ndyA1stx1sty1stx
357 353 356 syl φxAyA1stxyx1sty1stx
358 elsni 1sty1stx1sty=1stx
359 357 358 syl φxAyA1stxyx1sty=1stx
360 359 oveq1d φxAyA1stxyx1styS2ndy=1stxS2ndy
361 352 360 eqtrd φxAyA1stxyxSy=1stxS2ndy
362 348 230 eleqtrdi φxAyA1stxyxy1stx×A1stx
363 xp2nd y1stx×A1stx2ndyA1stx
364 362 363 syl φxAyA1stxyx2ndyA1stx
365 simprr φxAyA1stxyxyx
366 61 adantr φxAyA1stxyxx=1stx2ndx
367 350 366 eqeq12d φxAyA1stxyxy=x1sty2ndy=1stx2ndx
368 fvex 1styV
369 368 354 opth 1sty2ndy=1stx2ndx1sty=1stx2ndy=2ndx
370 369 baib 1sty=1stx1sty2ndy=1stx2ndx2ndy=2ndx
371 359 370 syl φxAyA1stxyx1sty2ndy=1stx2ndx2ndy=2ndx
372 367 371 bitrd φxAyA1stxyxy=x2ndy=2ndx
373 372 necon3bid φxAyA1stxyxyx2ndy2ndx
374 365 373 mpbid φxAyA1stxyx2ndy2ndx
375 eldifsn 2ndyA1stx2ndx2ndyA1stx2ndy2ndx
376 364 374 375 sylanbrc φxAyA1stxyx2ndyA1stx2ndx
377 ovex 1stxS2ndyV
378 difss A1stx2ndxA1stx
379 resmpt A1stx2ndxA1stxjA1stx1stxSjA1stx2ndx=jA1stx2ndx1stxSj
380 378 379 ax-mp jA1stx1stxSjA1stx2ndx=jA1stx2ndx1stxSj
381 oveq2 j=2ndy1stxSj=1stxS2ndy
382 380 381 elrnmpt1s 2ndyA1stx2ndx1stxS2ndyV1stxS2ndyranjA1stx1stxSjA1stx2ndx
383 376 377 382 sylancl φxAyA1stxyx1stxS2ndyranjA1stx1stxSjA1stx2ndx
384 361 383 eqeltrd φxAyA1stxyxSyranjA1stx1stxSjA1stx2ndx
385 df-ima jA1stx1stxSjA1stx2ndx=ranjA1stx1stxSjA1stx2ndx
386 384 385 eleqtrrdi φxAyA1stxyxSyjA1stx1stxSjA1stx2ndx
387 386 ex φxAyA1stxyxSyjA1stx1stxSjA1stx2ndx
388 346 387 biimtrid φxAyA1stxxSyjA1stx1stxSjA1stx2ndx
389 388 ralrimiv φxAyA1stxxSyjA1stx1stxSjA1stx2ndx
390 231 250 sstrid φxAA1stxxdomS
391 funimass4 FunSA1stxxdomSSA1stxxjA1stx1stxSjA1stx2ndxyA1stxxSyjA1stx1stxSjA1stx2ndx
392 246 390 391 syl2anc φxASA1stxxjA1stx1stxSjA1stx2ndxyA1stxxSyjA1stx1stxSjA1stx2ndx
393 389 392 mpbird φxASA1stxxjA1stx1stxSjA1stx2ndx
394 393 unissd φxASA1stxxjA1stx1stxSjA1stx2ndx
395 imassrn jA1stx1stxSjA1stx2ndxranjA1stx1stxSj
396 395 267 sstrid φxAjA1stx1stxSjA1stx2ndx𝒫BaseG
397 sspwuni jA1stx1stxSjA1stx2ndx𝒫BaseGjA1stx1stxSjA1stx2ndxBaseG
398 396 397 sylib φxAjA1stx1stxSjA1stx2ndxBaseG
399 166 6 394 398 mrcssd φxAKSA1stxxKjA1stx1stxSjA1stx2ndx
400 ss2in SxjA1stx1stxSj2ndxKSA1stxxKjA1stx1stxSjA1stx2ndxSxKSA1stxxjA1stx1stxSj2ndxKjA1stx1stxSjA1stx2ndx
401 345 399 400 syl2anc φxASxKSA1stxxjA1stx1stxSj2ndxKjA1stx1stxSjA1stx2ndx
402 58 a1i φxAdomjA1stx1stxSj=A1stx
403 53 402 69 8 6 dprddisj φxAjA1stx1stxSj2ndxKjA1stx1stxSjA1stx2ndx=0G
404 401 403 sseqtrd φxASxKSA1stxx0G
405 8 subg0cl KSA1stxxSubGrpG0GKSA1stxx
406 222 405 syl φxA0GKSA1stxx
407 333 406 elind φxA0GSxKSA1stxx
408 407 snssd φxA0GSxKSA1stxx
409 404 408 eqssd φxASxKSA1stxx=0G
410 340 409 eqtrid φxAKSA1stxxSx=0G
411 225 222 310 224 8 339 410 lsmdisj2 φxASxKSA1stxxLSSumGKSAI1stx=0G
412 309 411 sseqtrd φxASxKSAx0G
413 7 8 6 10 41 2 162 412 dmdprdd φGdomDProdS