Metamath Proof Explorer


Theorem dprd2da

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 ( 𝜑 → Rel 𝐴 )
dprd2d.2 ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
dprd2d.3 ( 𝜑 → dom 𝐴𝐼 )
dprd2d.4 ( ( 𝜑𝑖𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
dprd2d.5 ( 𝜑𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
dprd2d.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
Assertion dprd2da ( 𝜑𝐺 dom DProd 𝑆 )

Proof

Step Hyp Ref Expression
1 dprd2d.1 ( 𝜑 → Rel 𝐴 )
2 dprd2d.2 ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
3 dprd2d.3 ( 𝜑 → dom 𝐴𝐼 )
4 dprd2d.4 ( ( 𝜑𝑖𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
5 dprd2d.5 ( 𝜑𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
6 dprd2d.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
7 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
8 eqid ( 0g𝐺 ) = ( 0g𝐺 )
9 dprdgrp ( 𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → 𝐺 ∈ Grp )
10 5 9 syl ( 𝜑𝐺 ∈ Grp )
11 resiun2 ( 𝐴 𝑖𝐼 { 𝑖 } ) = 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } )
12 iunid 𝑖𝐼 { 𝑖 } = 𝐼
13 12 reseq2i ( 𝐴 𝑖𝐼 { 𝑖 } ) = ( 𝐴𝐼 )
14 11 13 eqtr3i 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) = ( 𝐴𝐼 )
15 relssres ( ( Rel 𝐴 ∧ dom 𝐴𝐼 ) → ( 𝐴𝐼 ) = 𝐴 )
16 1 3 15 syl2anc ( 𝜑 → ( 𝐴𝐼 ) = 𝐴 )
17 14 16 syl5eq ( 𝜑 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) = 𝐴 )
18 ovex ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ V
19 eqid ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) )
20 18 19 dmmpti dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼
21 reldmdprd Rel dom DProd
22 21 brrelex2i ( 𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ∈ V )
23 dmexg ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ∈ V → dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ∈ V )
24 5 22 23 3syl ( 𝜑 → dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ∈ V )
25 20 24 eqeltrrid ( 𝜑𝐼 ∈ V )
26 ressn ( 𝐴 ↾ { 𝑖 } ) = ( { 𝑖 } × ( 𝐴 “ { 𝑖 } ) )
27 snex { 𝑖 } ∈ V
28 ovex ( 𝑖 𝑆 𝑗 ) ∈ V
29 eqid ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) )
30 28 29 dmmpti dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } )
31 21 brrelex2i ( 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ∈ V )
32 dmexg ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ∈ V → dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ∈ V )
33 4 31 32 3syl ( ( 𝜑𝑖𝐼 ) → dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ∈ V )
34 30 33 eqeltrrid ( ( 𝜑𝑖𝐼 ) → ( 𝐴 “ { 𝑖 } ) ∈ V )
35 xpexg ( ( { 𝑖 } ∈ V ∧ ( 𝐴 “ { 𝑖 } ) ∈ V ) → ( { 𝑖 } × ( 𝐴 “ { 𝑖 } ) ) ∈ V )
36 27 34 35 sylancr ( ( 𝜑𝑖𝐼 ) → ( { 𝑖 } × ( 𝐴 “ { 𝑖 } ) ) ∈ V )
37 26 36 eqeltrid ( ( 𝜑𝑖𝐼 ) → ( 𝐴 ↾ { 𝑖 } ) ∈ V )
38 37 ralrimiva ( 𝜑 → ∀ 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) ∈ V )
39 iunexg ( ( 𝐼 ∈ V ∧ ∀ 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) ∈ V ) → 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) ∈ V )
40 25 38 39 syl2anc ( 𝜑 𝑖𝐼 ( 𝐴 ↾ { 𝑖 } ) ∈ V )
41 17 40 eqeltrrd ( 𝜑𝐴 ∈ V )
42 sneq ( 𝑖 = ( 1st𝑥 ) → { 𝑖 } = { ( 1st𝑥 ) } )
43 42 imaeq2d ( 𝑖 = ( 1st𝑥 ) → ( 𝐴 “ { 𝑖 } ) = ( 𝐴 “ { ( 1st𝑥 ) } ) )
44 oveq1 ( 𝑖 = ( 1st𝑥 ) → ( 𝑖 𝑆 𝑗 ) = ( ( 1st𝑥 ) 𝑆 𝑗 ) )
45 43 44 mpteq12dv ( 𝑖 = ( 1st𝑥 ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
46 45 breq2d ( 𝑖 = ( 1st𝑥 ) → ( 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ↔ 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
47 4 ralrimiva ( 𝜑 → ∀ 𝑖𝐼 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
48 47 adantr ( ( 𝜑𝑥𝐴 ) → ∀ 𝑖𝐼 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
49 3 adantr ( ( 𝜑𝑥𝐴 ) → dom 𝐴𝐼 )
50 1stdm ( ( Rel 𝐴𝑥𝐴 ) → ( 1st𝑥 ) ∈ dom 𝐴 )
51 1 50 sylan ( ( 𝜑𝑥𝐴 ) → ( 1st𝑥 ) ∈ dom 𝐴 )
52 49 51 sseldd ( ( 𝜑𝑥𝐴 ) → ( 1st𝑥 ) ∈ 𝐼 )
53 46 48 52 rspcdva ( ( 𝜑𝑥𝐴 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
54 53 3ad2antr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
55 54 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
56 ovex ( ( 1st𝑥 ) 𝑆 𝑗 ) ∈ V
57 eqid ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) )
58 56 57 dmmpti dom ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) = ( 𝐴 “ { ( 1st𝑥 ) } )
59 58 a1i ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → dom ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) = ( 𝐴 “ { ( 1st𝑥 ) } ) )
60 1st2nd ( ( Rel 𝐴𝑥𝐴 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
61 1 60 sylan ( ( 𝜑𝑥𝐴 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
62 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
63 61 62 eqeltrrd ( ( 𝜑𝑥𝐴 ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝐴 )
64 df-br ( ( 1st𝑥 ) 𝐴 ( 2nd𝑥 ) ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝐴 )
65 63 64 sylibr ( ( 𝜑𝑥𝐴 ) → ( 1st𝑥 ) 𝐴 ( 2nd𝑥 ) )
66 1 adantr ( ( 𝜑𝑥𝐴 ) → Rel 𝐴 )
67 elrelimasn ( Rel 𝐴 → ( ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↔ ( 1st𝑥 ) 𝐴 ( 2nd𝑥 ) ) )
68 66 67 syl ( ( 𝜑𝑥𝐴 ) → ( ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↔ ( 1st𝑥 ) 𝐴 ( 2nd𝑥 ) ) )
69 65 68 mpbird ( ( 𝜑𝑥𝐴 ) → ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
70 69 3ad2antr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
71 70 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
72 1 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → Rel 𝐴 )
73 simpr2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝑦𝐴 )
74 1st2nd ( ( Rel 𝐴𝑦𝐴 ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
75 72 73 74 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
76 75 73 eqeltrrd ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ 𝐴 )
77 df-br ( ( 1st𝑦 ) 𝐴 ( 2nd𝑦 ) ↔ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ 𝐴 )
78 76 77 sylibr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 1st𝑦 ) 𝐴 ( 2nd𝑦 ) )
79 elrelimasn ( Rel 𝐴 → ( ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↔ ( 1st𝑦 ) 𝐴 ( 2nd𝑦 ) ) )
80 72 79 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↔ ( 1st𝑦 ) 𝐴 ( 2nd𝑦 ) ) )
81 78 80 mpbird ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) )
82 81 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) )
83 simpr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 1st𝑥 ) = ( 1st𝑦 ) )
84 83 sneqd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → { ( 1st𝑥 ) } = { ( 1st𝑦 ) } )
85 84 imaeq2d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 𝐴 “ { ( 1st𝑥 ) } ) = ( 𝐴 “ { ( 1st𝑦 ) } ) )
86 82 85 eleqtrrd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
87 simplr3 ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → 𝑥𝑦 )
88 simpr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝑥𝐴 )
89 72 88 60 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
90 89 75 eqeq12d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑥 = 𝑦 ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
91 fvex ( 1st𝑥 ) ∈ V
92 fvex ( 2nd𝑥 ) ∈ V
93 91 92 opth ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ↔ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
94 90 93 bitrdi ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑥 = 𝑦 ↔ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) )
95 94 baibd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 𝑥 = 𝑦 ↔ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) )
96 95 necon3bid ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 𝑥𝑦 ↔ ( 2nd𝑥 ) ≠ ( 2nd𝑦 ) ) )
97 87 96 mpbid ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 2nd𝑥 ) ≠ ( 2nd𝑦 ) )
98 55 59 71 86 97 7 dprdcntz ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) ) )
99 df-ov ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ) = ( 𝑆 ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
100 oveq2 ( 𝑗 = ( 2nd𝑥 ) → ( ( 1st𝑥 ) 𝑆 𝑗 ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ) )
101 100 57 56 fvmpt3i ( ( 2nd𝑥 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ) )
102 70 101 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ) )
103 89 fveq2d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑆𝑥 ) = ( 𝑆 ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
104 99 102 103 3eqtr4a ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( 𝑆𝑥 ) )
105 104 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( 𝑆𝑥 ) )
106 83 oveq1d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 1st𝑥 ) 𝑆 𝑗 ) = ( ( 1st𝑦 ) 𝑆 𝑗 ) )
107 85 106 mpteq12dv ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) )
108 107 fveq1d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) )
109 df-ov ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) = ( 𝑆 ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
110 oveq2 ( 𝑗 = ( 2nd𝑦 ) → ( ( 1st𝑦 ) 𝑆 𝑗 ) = ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) )
111 eqid ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) )
112 ovex ( ( 1st𝑦 ) 𝑆 𝑗 ) ∈ V
113 110 111 112 fvmpt3i ( ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) )
114 81 113 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) )
115 75 fveq2d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑆𝑦 ) = ( 𝑆 ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
116 109 114 115 3eqtr4a ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( 𝑆𝑦 ) )
117 116 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( 𝑆𝑦 ) )
118 108 117 eqtrd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) = ( 𝑆𝑦 ) )
119 118 fveq2d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
120 98 105 119 3sstr3d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) = ( 1st𝑦 ) ) → ( 𝑆𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
121 1 2 3 4 5 6 dprd2dlem2 ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
122 45 oveq2d ( 𝑖 = ( 1st𝑥 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
123 122 19 18 fvmpt3i ( ( 1st𝑥 ) ∈ 𝐼 → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
124 52 123 syl ( ( 𝜑𝑥𝐴 ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
125 121 124 sseqtrrd ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ⊆ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) )
126 125 3ad2antr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑆𝑥 ) ⊆ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) )
127 126 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( 𝑆𝑥 ) ⊆ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) )
128 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → 𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
129 20 a1i ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 )
130 52 3ad2antr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 1st𝑥 ) ∈ 𝐼 )
131 130 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( 1st𝑥 ) ∈ 𝐼 )
132 3 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → dom 𝐴𝐼 )
133 1stdm ( ( Rel 𝐴𝑦𝐴 ) → ( 1st𝑦 ) ∈ dom 𝐴 )
134 72 73 133 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 1st𝑦 ) ∈ dom 𝐴 )
135 132 134 sseldd ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 1st𝑦 ) ∈ 𝐼 )
136 135 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( 1st𝑦 ) ∈ 𝐼 )
137 simpr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( 1st𝑥 ) ≠ ( 1st𝑦 ) )
138 128 129 131 136 137 7 dprdcntz ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) ) )
139 sneq ( 𝑖 = ( 1st𝑦 ) → { 𝑖 } = { ( 1st𝑦 ) } )
140 139 imaeq2d ( 𝑖 = ( 1st𝑦 ) → ( 𝐴 “ { 𝑖 } ) = ( 𝐴 “ { ( 1st𝑦 ) } ) )
141 oveq1 ( 𝑖 = ( 1st𝑦 ) → ( 𝑖 𝑆 𝑗 ) = ( ( 1st𝑦 ) 𝑆 𝑗 ) )
142 140 141 mpteq12dv ( 𝑖 = ( 1st𝑦 ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) )
143 142 oveq2d ( 𝑖 = ( 1st𝑦 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
144 143 19 18 fvmpt3i ( ( 1st𝑦 ) ∈ 𝐼 → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
145 135 144 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
146 145 fveq2d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ) )
147 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
148 147 dprdssv ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ⊆ ( Base ‘ 𝐺 )
149 142 breq2d ( 𝑖 = ( 1st𝑦 ) → ( 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ↔ 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
150 47 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ∀ 𝑖𝐼 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
151 149 150 135 rspcdva ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) )
152 112 111 dmmpti dom ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) = ( 𝐴 “ { ( 1st𝑦 ) } )
153 152 a1i ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → dom ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) = ( 𝐴 “ { ( 1st𝑦 ) } ) )
154 151 153 81 dprdub ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑦 ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
155 116 154 eqsstrrd ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑆𝑦 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) )
156 147 7 cntz2ss ( ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑆𝑦 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
157 148 155 156 sylancr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑦 ) } ) ↦ ( ( 1st𝑦 ) 𝑆 𝑗 ) ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
158 146 157 eqsstrd ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
159 158 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑦 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
160 138 159 sstrd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
161 127 160 sstrd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) ∧ ( 1st𝑥 ) ≠ ( 1st𝑦 ) ) → ( 𝑆𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
162 120 161 pm2.61dane ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑥𝑦 ) ) → ( 𝑆𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆𝑦 ) ) )
163 10 adantr ( ( 𝜑𝑥𝐴 ) → 𝐺 ∈ Grp )
164 147 subgacs ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) )
165 acsmre ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
166 163 164 165 3syl ( ( 𝜑𝑥𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
167 16 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝐴𝐼 ) = 𝐴 )
168 undif2 ( { ( 1st𝑥 ) } ∪ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ( { ( 1st𝑥 ) } ∪ 𝐼 )
169 52 snssd ( ( 𝜑𝑥𝐴 ) → { ( 1st𝑥 ) } ⊆ 𝐼 )
170 ssequn1 ( { ( 1st𝑥 ) } ⊆ 𝐼 ↔ ( { ( 1st𝑥 ) } ∪ 𝐼 ) = 𝐼 )
171 169 170 sylib ( ( 𝜑𝑥𝐴 ) → ( { ( 1st𝑥 ) } ∪ 𝐼 ) = 𝐼 )
172 168 171 syl5req ( ( 𝜑𝑥𝐴 ) → 𝐼 = ( { ( 1st𝑥 ) } ∪ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
173 172 reseq2d ( ( 𝜑𝑥𝐴 ) → ( 𝐴𝐼 ) = ( 𝐴 ↾ ( { ( 1st𝑥 ) } ∪ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
174 167 173 eqtr3d ( ( 𝜑𝑥𝐴 ) → 𝐴 = ( 𝐴 ↾ ( { ( 1st𝑥 ) } ∪ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
175 resundi ( 𝐴 ↾ ( { ( 1st𝑥 ) } ∪ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
176 174 175 eqtrdi ( ( 𝜑𝑥𝐴 ) → 𝐴 = ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
177 176 difeq1d ( ( 𝜑𝑥𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) = ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ∖ { 𝑥 } ) )
178 difundir ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ∖ { 𝑥 } ) = ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) )
179 177 178 eqtrdi ( ( 𝜑𝑥𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) = ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) ) )
180 neirr ¬ ( 1st𝑥 ) ≠ ( 1st𝑥 )
181 61 eleq1d ( ( 𝜑𝑥𝐴 ) → ( 𝑥 ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
182 df-br ( ( 1st𝑥 ) ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ( 2nd𝑥 ) ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
183 92 brresi ( ( 1st𝑥 ) ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ( 2nd𝑥 ) ↔ ( ( 1st𝑥 ) ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ∧ ( 1st𝑥 ) 𝐴 ( 2nd𝑥 ) ) )
184 183 simplbi ( ( 1st𝑥 ) ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ( 2nd𝑥 ) → ( 1st𝑥 ) ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) )
185 eldifsni ( ( 1st𝑥 ) ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) → ( 1st𝑥 ) ≠ ( 1st𝑥 ) )
186 184 185 syl ( ( 1st𝑥 ) ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ( 2nd𝑥 ) → ( 1st𝑥 ) ≠ ( 1st𝑥 ) )
187 182 186 sylbir ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) → ( 1st𝑥 ) ≠ ( 1st𝑥 ) )
188 181 187 syl6bi ( ( 𝜑𝑥𝐴 ) → ( 𝑥 ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) → ( 1st𝑥 ) ≠ ( 1st𝑥 ) ) )
189 180 188 mtoi ( ( 𝜑𝑥𝐴 ) → ¬ 𝑥 ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
190 disjsn ( ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
191 189 190 sylibr ( ( 𝜑𝑥𝐴 ) → ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∩ { 𝑥 } ) = ∅ )
192 disj3 ( ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∩ { 𝑥 } ) = ∅ ↔ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) )
193 191 192 sylib ( ( 𝜑𝑥𝐴 ) → ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) )
194 193 eqcomd ( ( 𝜑𝑥𝐴 ) → ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) = ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
195 194 uneq2d ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∖ { 𝑥 } ) ) = ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
196 179 195 eqtrd ( ( 𝜑𝑥𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) = ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
197 196 imaeq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
198 imaundi ( 𝑆 “ ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ∪ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
199 197 198 eqtrdi ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
200 199 unieqd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
201 uniun ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
202 200 201 eqtrdi ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
203 imassrn ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ran 𝑆
204 2 frnd ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
205 204 adantr ( ( 𝜑𝑥𝐴 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
206 mresspw ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
207 166 206 syl ( ( 𝜑𝑥𝐴 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
208 205 207 sstrd ( ( 𝜑𝑥𝐴 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) )
209 203 208 sstrid ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
210 sspwuni ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) )
211 209 210 sylib ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) )
212 166 6 211 mrcssidd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) )
213 imassrn ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ran 𝑆
214 213 208 sstrid ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
215 sspwuni ( ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( Base ‘ 𝐺 ) )
216 214 215 sylib ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( Base ‘ 𝐺 ) )
217 166 6 216 mrcssidd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
218 unss12 ( ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∧ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) → ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∪ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
219 212 217 218 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ∪ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∪ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
220 202 219 eqsstrd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∪ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
221 6 mrccl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
222 166 211 221 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
223 6 mrccl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
224 166 216 223 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
225 eqid ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 )
226 225 lsmunss ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∪ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
227 222 224 226 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∪ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
228 220 227 sstrd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
229 difss ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ↾ { ( 1st𝑥 ) } )
230 ressn ( 𝐴 ↾ { ( 1st𝑥 ) } ) = ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) )
231 229 230 sseqtri ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ⊆ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) )
232 imass2 ( ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ⊆ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ) )
233 231 232 ax-mp ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) )
234 ovex ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ V
235 oveq2 ( 𝑗 = 𝑖 → ( ( 1st𝑥 ) 𝑆 𝑗 ) = ( ( 1st𝑥 ) 𝑆 𝑖 ) )
236 57 235 elrnmpt1s ( ( 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ∧ ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ V ) → ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
237 234 236 mpan2 ( 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) → ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
238 237 rgen 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) )
239 238 a1i ( ( 𝜑𝑥𝐴 ) → ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
240 oveq1 ( 𝑦 = ( 1st𝑥 ) → ( 𝑦 𝑆 𝑖 ) = ( ( 1st𝑥 ) 𝑆 𝑖 ) )
241 240 eleq1d ( 𝑦 = ( 1st𝑥 ) → ( ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↔ ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
242 241 ralbidv ( 𝑦 = ( 1st𝑥 ) → ( ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↔ ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
243 91 242 ralsn ( ∀ 𝑦 ∈ { ( 1st𝑥 ) } ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↔ ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( ( 1st𝑥 ) 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
244 239 243 sylibr ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦 ∈ { ( 1st𝑥 ) } ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
245 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
246 245 ffund ( ( 𝜑𝑥𝐴 ) → Fun 𝑆 )
247 resss ( 𝐴 ↾ { ( 1st𝑥 ) } ) ⊆ 𝐴
248 230 247 eqsstrri ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ⊆ 𝐴
249 245 fdmd ( ( 𝜑𝑥𝐴 ) → dom 𝑆 = 𝐴 )
250 248 249 sseqtrrid ( ( 𝜑𝑥𝐴 ) → ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ⊆ dom 𝑆 )
251 funimassov ( ( Fun 𝑆 ∧ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ⊆ dom 𝑆 ) → ( ( 𝑆 “ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↔ ∀ 𝑦 ∈ { ( 1st𝑥 ) } ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
252 246 250 251 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆 “ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↔ ∀ 𝑦 ∈ { ( 1st𝑥 ) } ∀ 𝑖 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ( 𝑦 𝑆 𝑖 ) ∈ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
253 244 252 mpbird ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
254 233 253 sstrid ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
255 254 unissd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
256 df-ov ( ( 1st𝑥 ) 𝑆 𝑗 ) = ( 𝑆 ‘ ⟨ ( 1st𝑥 ) , 𝑗 ⟩ )
257 2 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ) → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
258 elrelimasn ( Rel 𝐴 → ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↔ ( 1st𝑥 ) 𝐴 𝑗 ) )
259 66 258 syl ( ( 𝜑𝑥𝐴 ) → ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↔ ( 1st𝑥 ) 𝐴 𝑗 ) )
260 259 biimpa ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ( 1st𝑥 ) 𝐴 𝑗 )
261 df-br ( ( 1st𝑥 ) 𝐴 𝑗 ↔ ⟨ ( 1st𝑥 ) , 𝑗 ⟩ ∈ 𝐴 )
262 260 261 sylib ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ⟨ ( 1st𝑥 ) , 𝑗 ⟩ ∈ 𝐴 )
263 257 262 ffvelrnd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ( 𝑆 ‘ ⟨ ( 1st𝑥 ) , 𝑗 ⟩ ) ∈ ( SubGrp ‘ 𝐺 ) )
264 256 263 eqeltrid ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ( ( 1st𝑥 ) 𝑆 𝑗 ) ∈ ( SubGrp ‘ 𝐺 ) )
265 264 fmpttd ( ( 𝜑𝑥𝐴 ) → ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) : ( 𝐴 “ { ( 1st𝑥 ) } ) ⟶ ( SubGrp ‘ 𝐺 ) )
266 265 frnd ( ( 𝜑𝑥𝐴 ) → ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ⊆ ( SubGrp ‘ 𝐺 ) )
267 266 207 sstrd ( ( 𝜑𝑥𝐴 ) → ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
268 sspwuni ( ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ⊆ ( Base ‘ 𝐺 ) )
269 267 268 sylib ( ( 𝜑𝑥𝐴 ) → ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ⊆ ( Base ‘ 𝐺 ) )
270 166 6 255 269 mrcssd ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐾 ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
271 6 dprdspan ( 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) = ( 𝐾 ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
272 53 271 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) = ( 𝐾 ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
273 270 272 sseqtrrd ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
274 18 19 fnmpti ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) Fn 𝐼
275 fnressn ( ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) Fn 𝐼 ∧ ( 1st𝑥 ) ∈ 𝐼 ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) = { ⟨ ( 1st𝑥 ) , ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⟩ } )
276 274 52 275 sylancr ( ( 𝜑𝑥𝐴 ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) = { ⟨ ( 1st𝑥 ) , ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⟩ } )
277 124 opeq2d ( ( 𝜑𝑥𝐴 ) → ⟨ ( 1st𝑥 ) , ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⟩ = ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ )
278 277 sneqd ( ( 𝜑𝑥𝐴 ) → { ⟨ ( 1st𝑥 ) , ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ⟩ } = { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } )
279 276 278 eqtrd ( ( 𝜑𝑥𝐴 ) → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) = { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } )
280 279 oveq2d ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) ) = ( 𝐺 DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ) )
281 dprdsubg ( 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
282 53 281 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
283 dprdsn ( ( ( 1st𝑥 ) ∈ 𝐼 ∧ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ∧ ( 𝐺 DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) )
284 52 282 283 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐺 dom DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ∧ ( 𝐺 DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) )
285 284 simprd ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd { ⟨ ( 1st𝑥 ) , ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⟩ } ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
286 280 285 eqtrd ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
287 5 adantr ( ( 𝜑𝑥𝐴 ) → 𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
288 20 a1i ( ( 𝜑𝑥𝐴 ) → dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 )
289 difss ( 𝐼 ∖ { ( 1st𝑥 ) } ) ⊆ 𝐼
290 289 a1i ( ( 𝜑𝑥𝐴 ) → ( 𝐼 ∖ { ( 1st𝑥 ) } ) ⊆ 𝐼 )
291 disjdif ( { ( 1st𝑥 ) } ∩ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ∅
292 291 a1i ( ( 𝜑𝑥𝐴 ) → ( { ( 1st𝑥 ) } ∩ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ∅ )
293 287 288 169 290 292 7 dprdcntz2 ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ { ( 1st𝑥 ) } ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
294 286 293 eqsstrrd ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
295 4 adantlr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑖𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
296 66 245 49 295 287 6 290 dprd2dlem1 ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )
297 resmpt ( ( 𝐼 ∖ { ( 1st𝑥 ) } ) ⊆ 𝐼 → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ( 𝑖 ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
298 289 297 ax-mp ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ( 𝑖 ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) )
299 298 oveq2i ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
300 296 299 eqtr4di ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
301 300 fveq2d ( ( 𝜑𝑥𝐴 ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
302 294 301 sseqtrrd ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
303 273 302 sstrd ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
304 225 7 lsmsubg ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
305 222 224 303 304 syl3anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
306 6 mrcsscl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ∧ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
307 166 228 305 306 syl3anc ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
308 sslin ( ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆𝑥 ) ∩ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ) )
309 307 308 syl ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆𝑥 ) ∩ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ) )
310 2 ffvelrnda ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) )
311 225 lsmlub ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∧ ( 𝑆𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) ↔ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) )
312 222 310 282 311 syl3anc ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∧ ( 𝑆𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) ↔ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ) )
313 273 121 312 mpbi2and ( ( 𝜑𝑥𝐴 ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
314 313 124 sseqtrrd ( ( 𝜑𝑥𝐴 ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ⊆ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) )
315 287 288 290 dprdres ( ( 𝜑𝑥𝐴 ) → ( 𝐺 dom DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ∧ ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ⊆ ( 𝐺 DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) )
316 315 simpld ( ( 𝜑𝑥𝐴 ) → 𝐺 dom DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
317 6 dprdspan ( 𝐺 dom DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( 𝐾 ran ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
318 316 317 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( 𝐾 ran ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
319 df-ima ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ran ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) )
320 319 unieqi ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) = ran ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) )
321 320 fveq2i ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( 𝐾 ran ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) )
322 318 321 eqtr4di ( ( 𝜑𝑥𝐴 ) → ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) = ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
323 300 322 eqtrd ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
324 eqimss ( ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ⊆ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
325 323 324 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ⊆ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) )
326 ss2in ( ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ⊆ ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ∧ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ⊆ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ⊆ ( ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ∩ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
327 314 325 326 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ⊆ ( ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ∩ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
328 287 288 52 8 6 dprddisj ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ‘ ( 1st𝑥 ) ) ∩ ( 𝐾 ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) “ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) = { ( 0g𝐺 ) } )
329 327 328 sseqtrd ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ⊆ { ( 0g𝐺 ) } )
330 225 lsmub2 ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆𝑥 ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) )
331 222 310 330 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ⊆ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) )
332 8 subg0cl ( ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ ( 𝑆𝑥 ) )
333 310 332 syl ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( 𝑆𝑥 ) )
334 331 333 sseldd ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) )
335 8 subg0cl ( ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
336 224 335 syl ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) )
337 334 336 elind ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
338 337 snssd ( ( 𝜑𝑥𝐴 ) → { ( 0g𝐺 ) } ⊆ ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) )
339 329 338 eqssd ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝑆𝑥 ) ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) = { ( 0g𝐺 ) } )
340 incom ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∩ ( 𝑆𝑥 ) ) = ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) )
341 69 101 syl ( ( 𝜑𝑥𝐴 ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ) )
342 61 fveq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) = ( 𝑆 ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
343 99 341 342 3eqtr4a ( ( 𝜑𝑥𝐴 ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( 𝑆𝑥 ) )
344 eqimss2 ( ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) = ( 𝑆𝑥 ) → ( 𝑆𝑥 ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) )
345 343 344 syl ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) )
346 eldifsn ( 𝑦 ∈ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) )
347 1 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → Rel 𝐴 )
348 simprl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) )
349 247 348 sseldi ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑦𝐴 )
350 347 349 74 syl2anc ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
351 350 fveq2d ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑆𝑦 ) = ( 𝑆 ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
352 351 109 eqtr4di ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑆𝑦 ) = ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) )
353 350 348 eqeltrrd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) )
354 fvex ( 2nd𝑦 ) ∈ V
355 354 opelresi ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ↔ ( ( 1st𝑦 ) ∈ { ( 1st𝑥 ) } ∧ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ 𝐴 ) )
356 355 simplbi ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) → ( 1st𝑦 ) ∈ { ( 1st𝑥 ) } )
357 353 356 syl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 1st𝑦 ) ∈ { ( 1st𝑥 ) } )
358 elsni ( ( 1st𝑦 ) ∈ { ( 1st𝑥 ) } → ( 1st𝑦 ) = ( 1st𝑥 ) )
359 357 358 syl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 1st𝑦 ) = ( 1st𝑥 ) )
360 359 oveq1d ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( ( 1st𝑦 ) 𝑆 ( 2nd𝑦 ) ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) )
361 352 360 eqtrd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑆𝑦 ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) )
362 348 230 eleqtrdi ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑦 ∈ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) )
363 xp2nd ( 𝑦 ∈ ( { ( 1st𝑥 ) } × ( 𝐴 “ { ( 1st𝑥 ) } ) ) → ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
364 362 363 syl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) )
365 simprr ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑦𝑥 )
366 61 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
367 350 366 eqeq12d ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑦 = 𝑥 ↔ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
368 fvex ( 1st𝑦 ) ∈ V
369 368 354 opth ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ↔ ( ( 1st𝑦 ) = ( 1st𝑥 ) ∧ ( 2nd𝑦 ) = ( 2nd𝑥 ) ) )
370 369 baib ( ( 1st𝑦 ) = ( 1st𝑥 ) → ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ↔ ( 2nd𝑦 ) = ( 2nd𝑥 ) ) )
371 359 370 syl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ↔ ( 2nd𝑦 ) = ( 2nd𝑥 ) ) )
372 367 371 bitrd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑦 = 𝑥 ↔ ( 2nd𝑦 ) = ( 2nd𝑥 ) ) )
373 372 necon3bid ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑦𝑥 ↔ ( 2nd𝑦 ) ≠ ( 2nd𝑥 ) ) )
374 365 373 mpbid ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 2nd𝑦 ) ≠ ( 2nd𝑥 ) )
375 eldifsn ( ( 2nd𝑦 ) ∈ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ↔ ( ( 2nd𝑦 ) ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ∧ ( 2nd𝑦 ) ≠ ( 2nd𝑥 ) ) )
376 364 374 375 sylanbrc ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 2nd𝑦 ) ∈ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) )
377 ovex ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) ∈ V
378 difss ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ⊆ ( 𝐴 “ { ( 1st𝑥 ) } )
379 resmpt ( ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ⊆ ( 𝐴 “ { ( 1st𝑥 ) } ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) = ( 𝑗 ∈ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
380 378 379 ax-mp ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) = ( 𝑗 ∈ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) )
381 oveq2 ( 𝑗 = ( 2nd𝑦 ) → ( ( 1st𝑥 ) 𝑆 𝑗 ) = ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) )
382 380 381 elrnmpt1s ( ( ( 2nd𝑦 ) ∈ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ∧ ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) ∈ V ) → ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) ∈ ran ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
383 376 377 382 sylancl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( ( 1st𝑥 ) 𝑆 ( 2nd𝑦 ) ) ∈ ran ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
384 361 383 eqeltrd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑆𝑦 ) ∈ ran ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
385 df-ima ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) = ran ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ↾ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) )
386 384 385 eleqtrrdi ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) ) → ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
387 386 ex ( ( 𝜑𝑥𝐴 ) → ( ( 𝑦 ∈ ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∧ 𝑦𝑥 ) → ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) )
388 346 387 syl5bi ( ( 𝜑𝑥𝐴 ) → ( 𝑦 ∈ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) → ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) )
389 388 ralrimiv ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦 ∈ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
390 231 250 sstrid ( ( 𝜑𝑥𝐴 ) → ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ⊆ dom 𝑆 )
391 funimass4 ( ( Fun 𝑆 ∧ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ⊆ dom 𝑆 ) → ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ↔ ∀ 𝑦 ∈ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) )
392 246 390 391 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ↔ ∀ 𝑦 ∈ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ( 𝑆𝑦 ) ∈ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) )
393 389 392 mpbird ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
394 393 unissd ( ( 𝜑𝑥𝐴 ) → ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) )
395 imassrn ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ⊆ ran ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) )
396 395 267 sstrid ( ( 𝜑𝑥𝐴 ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
397 sspwuni ( ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ⊆ ( Base ‘ 𝐺 ) )
398 396 397 sylib ( ( 𝜑𝑥𝐴 ) → ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ⊆ ( Base ‘ 𝐺 ) )
399 166 6 394 398 mrcssd ( ( 𝜑𝑥𝐴 ) → ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐾 ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) )
400 ss2in ( ( ( 𝑆𝑥 ) ⊆ ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) ∧ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐾 ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) ∩ ( 𝐾 ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) ) )
401 345 399 400 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) ⊆ ( ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) ∩ ( 𝐾 ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) ) )
402 58 a1i ( ( 𝜑𝑥𝐴 ) → dom ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) = ( 𝐴 “ { ( 1st𝑥 ) } ) )
403 53 402 69 8 6 dprddisj ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ‘ ( 2nd𝑥 ) ) ∩ ( 𝐾 ( ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) “ ( ( 𝐴 “ { ( 1st𝑥 ) } ) ∖ { ( 2nd𝑥 ) } ) ) ) ) = { ( 0g𝐺 ) } )
404 401 403 sseqtrd ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g𝐺 ) } )
405 8 subg0cl ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) )
406 222 405 syl ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) )
407 333 406 elind ( ( 𝜑𝑥𝐴 ) → ( 0g𝐺 ) ∈ ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) )
408 407 snssd ( ( 𝜑𝑥𝐴 ) → { ( 0g𝐺 ) } ⊆ ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) )
409 404 408 eqssd ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } )
410 340 409 syl5eq ( ( 𝜑𝑥𝐴 ) → ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ∩ ( 𝑆𝑥 ) ) = { ( 0g𝐺 ) } )
411 225 222 310 224 8 339 410 lsmdisj2 ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( ( 𝐾 ( 𝑆 “ ( ( 𝐴 ↾ { ( 1st𝑥 ) } ) ∖ { 𝑥 } ) ) ) ( LSSum ‘ 𝐺 ) ( 𝐾 ( 𝑆 “ ( 𝐴 ↾ ( 𝐼 ∖ { ( 1st𝑥 ) } ) ) ) ) ) ) = { ( 0g𝐺 ) } )
412 309 411 sseqtrd ( ( 𝜑𝑥𝐴 ) → ( ( 𝑆𝑥 ) ∩ ( 𝐾 ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g𝐺 ) } )
413 7 8 6 10 41 2 162 412 dmdprdd ( 𝜑𝐺 dom DProd 𝑆 )