Metamath Proof Explorer


Theorem drhmsubc

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses drhmsubc.c C=UDivRing
drhmsubc.j J=rC,sCrRingHoms
Assertion drhmsubc UVJSubcatRingCatU

Proof

Step Hyp Ref Expression
1 drhmsubc.c C=UDivRing
2 drhmsubc.j J=rC,sCrRingHoms
3 drngring rDivRingrRing
4 3 rgen rDivRingrRing
5 4 1 2 srhmsubc UVJSubcatRingCatU