Metamath Proof Explorer


Theorem dssmap2d

Description: For any base set B the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
dssmapfvd.d D=OB
dssmapfvd.b φBV
Assertion dssmap2d φDD=I𝒫B𝒫B

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
2 dssmapfvd.d D=OB
3 dssmapfvd.b φBV
4 1 2 3 dssmapnvod φD-1=D
5 4 coeq1d φD-1D=DD
6 1 2 3 dssmapf1od φD:𝒫B𝒫B1-1 onto𝒫B𝒫B
7 f1ococnv1 D:𝒫B𝒫B1-1 onto𝒫B𝒫BD-1D=I𝒫B𝒫B
8 6 7 syl φD-1D=I𝒫B𝒫B
9 5 8 eqtr3d φDD=I𝒫B𝒫B