Metamath Proof Explorer


Theorem dssmapf1od

Description: For any base set B the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
dssmapfvd.d D=OB
dssmapfvd.b φBV
Assertion dssmapf1od φD:𝒫B𝒫B1-1 onto𝒫B𝒫B

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O=bVf𝒫b𝒫bs𝒫bbfbs
2 dssmapfvd.d D=OB
3 dssmapfvd.b φBV
4 1 2 3 dssmapfvd φD=f𝒫B𝒫Bs𝒫BBfBs
5 3 pwexd φ𝒫BV
6 5 mptexd φs𝒫BBfBsV
7 6 ralrimivw φf𝒫B𝒫Bs𝒫BBfBsV
8 nfcv _f𝒫B𝒫B
9 8 fnmptf f𝒫B𝒫Bs𝒫BBfBsVf𝒫B𝒫Bs𝒫BBfBsFn𝒫B𝒫B
10 7 9 syl φf𝒫B𝒫Bs𝒫BBfBsFn𝒫B𝒫B
11 fneq1 D=f𝒫B𝒫Bs𝒫BBfBsDFn𝒫B𝒫Bf𝒫B𝒫Bs𝒫BBfBsFn𝒫B𝒫B
12 11 biimprd D=f𝒫B𝒫Bs𝒫BBfBsf𝒫B𝒫Bs𝒫BBfBsFn𝒫B𝒫BDFn𝒫B𝒫B
13 4 10 12 sylc φDFn𝒫B𝒫B
14 1 2 3 dssmapnvod φD-1=D
15 nvof1o DFn𝒫B𝒫BD-1=DD:𝒫B𝒫B1-1 onto𝒫B𝒫B
16 13 14 15 syl2anc φD:𝒫B𝒫B1-1 onto𝒫B𝒫B