Metamath Proof Explorer


Theorem dssmapfv3d

Description: Value of the duality operator for self-mappings of subsets of a base set, B when applied to function F and subset S . (Contributed by RP, 19-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
dssmapfv2d.f φ F 𝒫 B 𝒫 B
dssmapfv2d.g G = D F
dssmapfv3d.s φ S 𝒫 B
dssmapfv3d.t T = G S
Assertion dssmapfv3d φ T = B F B S

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 dssmapfv2d.f φ F 𝒫 B 𝒫 B
5 dssmapfv2d.g G = D F
6 dssmapfv3d.s φ S 𝒫 B
7 dssmapfv3d.t T = G S
8 1 2 3 4 5 dssmapfv2d φ G = s 𝒫 B B F B s
9 difeq2 s = S B s = B S
10 9 fveq2d s = S F B s = F B S
11 10 difeq2d s = S B F B s = B F B S
12 11 adantl φ s = S B F B s = B F B S
13 3 difexd φ B F B S V
14 8 12 6 13 fvmptd φ G S = B F B S
15 7 14 syl5eq φ T = B F B S