Metamath Proof Explorer


Theorem dvaplusgv

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h H=LHypK
dvafplus.t T=LTrnKW
dvafplus.e E=TEndoKW
dvafplus.u U=DVecAKW
dvafplus.f F=ScalarU
dvafplus.p +˙=+F
Assertion dvaplusgv KVWHRESEGTR+˙SG=RGSG

Proof

Step Hyp Ref Expression
1 dvafplus.h H=LHypK
2 dvafplus.t T=LTrnKW
3 dvafplus.e E=TEndoKW
4 dvafplus.u U=DVecAKW
5 dvafplus.f F=ScalarU
6 dvafplus.p +˙=+F
7 1 2 3 4 5 6 dvaplusg KVWHRESER+˙S=fTRfSf
8 7 fveq1d KVWHRESER+˙SG=fTRfSfG
9 8 3adantr3 KVWHRESEGTR+˙SG=fTRfSfG
10 simpr3 KVWHRESEGTGT
11 fveq2 f=GRf=RG
12 fveq2 f=GSf=SG
13 11 12 coeq12d f=GRfSf=RGSG
14 eqid fTRfSf=fTRfSf
15 fvex RGV
16 fvex SGV
17 15 16 coex RGSGV
18 13 14 17 fvmpt GTfTRfSfG=RGSG
19 10 18 syl KVWHRESEGTfTRfSfG=RGSG
20 9 19 eqtrd KVWHRESEGTR+˙SG=RGSG