Metamath Proof Explorer


Theorem dvdslcmf

Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020)

Ref Expression
Assertion dvdslcmf ZZFinxZxlcm_Z

Proof

Step Hyp Ref Expression
1 ssel ZxZx
2 1 ad2antrr ZZFin0ZxZx
3 2 imp ZZFin0ZxZx
4 dvds0 xx0
5 3 4 syl ZZFin0ZxZx0
6 lcmf0val Z0Zlcm_Z=0
7 6 ad4ant13 ZZFin0ZxZlcm_Z=0
8 5 7 breqtrrd ZZFin0ZxZxlcm_Z
9 8 ralrimiva ZZFin0ZxZxlcm_Z
10 df-nel 0Z¬0Z
11 lcmfcllem ZZFin0Zlcm_Zn|xZxn
12 11 3expa ZZFin0Zlcm_Zn|xZxn
13 10 12 sylan2br ZZFin¬0Zlcm_Zn|xZxn
14 lcmfn0cl ZZFin0Zlcm_Z
15 14 3expa ZZFin0Zlcm_Z
16 10 15 sylan2br ZZFin¬0Zlcm_Z
17 breq2 n=lcm_Zxnxlcm_Z
18 17 ralbidv n=lcm_ZxZxnxZxlcm_Z
19 18 elrab3 lcm_Zlcm_Zn|xZxnxZxlcm_Z
20 16 19 syl ZZFin¬0Zlcm_Zn|xZxnxZxlcm_Z
21 13 20 mpbid ZZFin¬0ZxZxlcm_Z
22 9 21 pm2.61dan ZZFinxZxlcm_Z