Metamath Proof Explorer


Theorem dvdsr

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
dvdsr.3 ·˙=R
Assertion dvdsr X˙YXBzBz·˙X=Y

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 dvdsr.3 ·˙=R
4 2 reldvdsr Rel˙
5 4 brrelex12i X˙YXVYV
6 elex XBXV
7 id z·˙X=Yz·˙X=Y
8 ovex z·˙XV
9 7 8 eqeltrrdi z·˙X=YYV
10 9 rexlimivw zBz·˙X=YYV
11 6 10 anim12i XBzBz·˙X=YXVYV
12 simpl x=Xy=Yx=X
13 12 eleq1d x=Xy=YxBXB
14 12 oveq2d x=Xy=Yz·˙x=z·˙X
15 simpr x=Xy=Yy=Y
16 14 15 eqeq12d x=Xy=Yz·˙x=yz·˙X=Y
17 16 rexbidv x=Xy=YzBz·˙x=yzBz·˙X=Y
18 13 17 anbi12d x=Xy=YxBzBz·˙x=yXBzBz·˙X=Y
19 1 2 3 dvdsrval ˙=xy|xBzBz·˙x=y
20 18 19 brabga XVYVX˙YXBzBz·˙X=Y
21 5 11 20 pm5.21nii X˙YXBzBz·˙X=Y