Metamath Proof Explorer


Theorem dvhfvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhfvsca.h H=LHypK
dvhfvsca.t T=LTrnKW
dvhfvsca.e E=TEndoKW
dvhfvsca.u U=DVecHKW
dvhfvsca.s ·˙=U
Assertion dvhfvsca KVWH·˙=sE,fT×Es1stfs2ndf

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H=LHypK
2 dvhfvsca.t T=LTrnKW
3 dvhfvsca.e E=TEndoKW
4 dvhfvsca.u U=DVecHKW
5 dvhfvsca.s ·˙=U
6 eqid EDRingKW=EDRingKW
7 1 2 3 6 4 dvhset KVWHU=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
8 7 fveq2d KVWHU=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
9 3 fvexi EV
10 2 fvexi TV
11 10 9 xpex T×EV
12 9 11 mpoex sE,fT×Es1stfs2ndfV
13 eqid BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
14 13 lmodvsca sE,fT×Es1stfs2ndfVsE,fT×Es1stfs2ndf=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
15 12 14 ax-mp sE,fT×Es1stfs2ndf=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
16 8 5 15 3eqtr4g KVWH·˙=sE,fT×Es1stfs2ndf