Metamath Proof Explorer


Theorem dvhfvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhfvsca.h H = LHyp K
dvhfvsca.t T = LTrn K W
dvhfvsca.e E = TEndo K W
dvhfvsca.u U = DVecH K W
dvhfvsca.s · ˙ = U
Assertion dvhfvsca K V W H · ˙ = s E , f T × E s 1 st f s 2 nd f

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H = LHyp K
2 dvhfvsca.t T = LTrn K W
3 dvhfvsca.e E = TEndo K W
4 dvhfvsca.u U = DVecH K W
5 dvhfvsca.s · ˙ = U
6 eqid EDRing K W = EDRing K W
7 1 2 3 6 4 dvhset K V W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
8 7 fveq2d K V W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
9 3 fvexi E V
10 2 fvexi T V
11 10 9 xpex T × E V
12 9 11 mpoex s E , f T × E s 1 st f s 2 nd f V
13 eqid Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
14 13 lmodvsca s E , f T × E s 1 st f s 2 nd f V s E , f T × E s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
15 12 14 ax-mp s E , f T × E s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
16 8 5 15 3eqtr4g K V W H · ˙ = s E , f T × E s 1 st f s 2 nd f