Metamath Proof Explorer


Theorem dvhsca

Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses dvhsca.h H=LHypK
dvhsca.d D=EDRingKW
dvhsca.u U=DVecHKW
dvhsca.f F=ScalarU
Assertion dvhsca KXWHF=D

Proof

Step Hyp Ref Expression
1 dvhsca.h H=LHypK
2 dvhsca.d D=EDRingKW
3 dvhsca.u U=DVecHKW
4 dvhsca.f F=ScalarU
5 eqid LTrnKW=LTrnKW
6 eqid TEndoKW=TEndoKW
7 1 5 6 2 3 dvhset KXWHU=BasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf
8 7 fveq2d KXWHScalarU=ScalarBasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf
9 2 fvexi DV
10 eqid BasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf=BasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf
11 10 lmodsca DVD=ScalarBasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf
12 9 11 ax-mp D=ScalarBasendxLTrnKW×TEndoKW+ndxfLTrnKW×TEndoKW,gLTrnKW×TEndoKW1stf1stghLTrnKW2ndfh2ndghScalarndxDndxsTEndoKW,fLTrnKW×TEndoKWs1stfs2ndf
13 8 4 12 3eqtr4g KXWHF=D