Metamath Proof Explorer


Theorem dvhvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013)

Ref Expression
Hypotheses dvhfvsca.h H=LHypK
dvhfvsca.t T=LTrnKW
dvhfvsca.e E=TEndoKW
dvhfvsca.u U=DVecHKW
dvhfvsca.s ·˙=U
Assertion dvhvsca KVWHREFT×ER·˙F=R1stFR2ndF

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H=LHypK
2 dvhfvsca.t T=LTrnKW
3 dvhfvsca.e E=TEndoKW
4 dvhfvsca.u U=DVecHKW
5 dvhfvsca.s ·˙=U
6 1 2 3 4 5 dvhfvsca KVWH·˙=sE,fT×Es1stfs2ndf
7 6 oveqd KVWHR·˙F=RsE,fT×Es1stfs2ndfF
8 eqid sE,fT×Es1stfs2ndf=sE,fT×Es1stfs2ndf
9 8 dvhvscaval REFT×ERsE,fT×Es1stfs2ndfF=R1stFR2ndF
10 7 9 sylan9eq KVWHREFT×ER·˙F=R1stFR2ndF