Metamath Proof Explorer


Theorem dvmptcl

Description: Closure lemma for dvmptcmul and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φS
dvmptadd.a φxXA
dvmptadd.b φxXBV
dvmptadd.da φdxXAdSx=xXB
Assertion dvmptcl φxXB

Proof

Step Hyp Ref Expression
1 dvmptadd.s φS
2 dvmptadd.a φxXA
3 dvmptadd.b φxXBV
4 dvmptadd.da φdxXAdSx=xXB
5 dvfg SdxXAdSx:domdxXAdSx
6 1 5 syl φdxXAdSx:domdxXAdSx
7 4 dmeqd φdomdxXAdSx=domxXB
8 3 ralrimiva φxXBV
9 dmmptg xXBVdomxXB=X
10 8 9 syl φdomxXB=X
11 7 10 eqtrd φdomdxXAdSx=X
12 11 feq2d φdxXAdSx:domdxXAdSxdxXAdSx:X
13 6 12 mpbid φdxXAdSx:X
14 4 feq1d φdxXAdSx:XxXB:X
15 13 14 mpbid φxXB:X
16 15 fvmptelcdm φxXB