Metamath Proof Explorer


Theorem dvmptidg

Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptidg.s φS
dvmptidg.a φATopOpenfld𝑡S
Assertion dvmptidg φdxAxdSx=xA1

Proof

Step Hyp Ref Expression
1 dvmptidg.s φS
2 dvmptidg.a φATopOpenfld𝑡S
3 ax-resscn
4 sseq1 S=S
5 3 4 mpbiri S=S
6 eqimss S=S
7 5 6 pm3.2i S=SS=S
8 elpri SS=S=
9 1 8 syl φS=S=
10 pm3.44 S=SS=SS=S=S
11 7 9 10 mpsyl φS
12 11 sselda φxSx
13 1red φxS1
14 1 dvmptid φdxSxdSx=xS1
15 eqid TopOpenfld=TopOpenfld
16 15 cnfldtopon TopOpenfldTopOn
17 16 a1i φTopOpenfldTopOn
18 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
19 17 11 18 syl2anc φTopOpenfld𝑡STopOnS
20 toponss TopOpenfld𝑡STopOnSATopOpenfld𝑡SAS
21 19 2 20 syl2anc φAS
22 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
23 1 12 13 14 21 22 15 2 dvmptres φdxAxdSx=xA1