Metamath Proof Explorer


Theorem dvmptrecl

Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvmptrecl.s φS
dvmptrecl.a φxSA
dvmptrecl.v φxSBV
dvmptrecl.b φdxSAdx=xSB
Assertion dvmptrecl φxSB

Proof

Step Hyp Ref Expression
1 dvmptrecl.s φS
2 dvmptrecl.a φxSA
3 dvmptrecl.v φxSBV
4 dvmptrecl.b φdxSAdx=xSB
5 2 fmpttd φxSA:S
6 dvfre xSA:SSdxSAdx:domdxSAdx
7 5 1 6 syl2anc φdxSAdx:domdxSAdx
8 4 dmeqd φdomdxSAdx=domxSB
9 3 ralrimiva φxSBV
10 dmmptg xSBVdomxSB=S
11 9 10 syl φdomxSB=S
12 8 11 eqtrd φdomdxSAdx=S
13 4 12 feq12d φdxSAdx:domdxSAdxxSB:S
14 7 13 mpbid φxSB:S
15 14 fvmptelcdm φxSB