Metamath Proof Explorer


Theorem dvrcan1

Description: A cancellation law for division. ( divcan1 analog.) (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses dvrass.b B=BaseR
dvrass.o U=UnitR
dvrass.d ×˙=/rR
dvrass.t ·˙=R
Assertion dvrcan1 RRingXBYUX×˙Y·˙Y=X

Proof

Step Hyp Ref Expression
1 dvrass.b B=BaseR
2 dvrass.o U=UnitR
3 dvrass.d ×˙=/rR
4 dvrass.t ·˙=R
5 eqid invrR=invrR
6 1 4 2 5 3 dvrval XBYUX×˙Y=X·˙invrRY
7 6 3adant1 RRingXBYUX×˙Y=X·˙invrRY
8 7 oveq1d RRingXBYUX×˙Y·˙Y=X·˙invrRY·˙Y
9 simp1 RRingXBYURRing
10 simp2 RRingXBYUXB
11 2 5 1 ringinvcl RRingYUinvrRYB
12 11 3adant2 RRingXBYUinvrRYB
13 1 2 unitcl YUYB
14 13 3ad2ant3 RRingXBYUYB
15 1 4 ringass RRingXBinvrRYBYBX·˙invrRY·˙Y=X·˙invrRY·˙Y
16 9 10 12 14 15 syl13anc RRingXBYUX·˙invrRY·˙Y=X·˙invrRY·˙Y
17 eqid 1R=1R
18 2 5 4 17 unitlinv RRingYUinvrRY·˙Y=1R
19 18 3adant2 RRingXBYUinvrRY·˙Y=1R
20 19 oveq2d RRingXBYUX·˙invrRY·˙Y=X·˙1R
21 1 4 17 ringridm RRingXBX·˙1R=X
22 21 3adant3 RRingXBYUX·˙1R=X
23 20 22 eqtrd RRingXBYUX·˙invrRY·˙Y=X
24 16 23 eqtrd RRingXBYUX·˙invrRY·˙Y=X
25 8 24 eqtrd RRingXBYUX×˙Y·˙Y=X