Metamath Proof Explorer


Theorem dvtanlem

Description: Lemma for dvtan - the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvtanlem cos-10TopOpenfld

Proof

Step Hyp Ref Expression
1 coscn cos:cn
2 eqid TopOpenfld=TopOpenfld
3 2 cncfcn1 cn=TopOpenfldCnTopOpenfld
4 1 3 eleqtri cosTopOpenfldCnTopOpenfld
5 2 cnfldhaus TopOpenfldHaus
6 0cn 0
7 2 cnfldtopon TopOpenfldTopOn
8 7 toponunii =TopOpenfld
9 8 sncld TopOpenfldHaus00ClsdTopOpenfld
10 5 6 9 mp2an 0ClsdTopOpenfld
11 8 cldopn 0ClsdTopOpenfld0TopOpenfld
12 10 11 ax-mp 0TopOpenfld
13 cnima cosTopOpenfldCnTopOpenfld0TopOpenfldcos-10TopOpenfld
14 4 12 13 mp2an cos-10TopOpenfld