Metamath Proof Explorer


Theorem ecxrn2

Description: The ( R |X. S ) -coset of a set is the Cartesian product of its R -coset and S -coset. (Contributed by Peter Mazsa, 16-Oct-2020)

Ref Expression
Assertion ecxrn2 A V A R S = A R × A S

Proof

Step Hyp Ref Expression
1 relecxrn A V Rel A R S
2 relxp Rel A R × A S
3 1 2 jctir A V Rel A R S Rel A R × A S
4 brxrn A V x V y V A R S x y A R x A S y
5 4 el3v23 A V A R S x y A R x A S y
6 opex x y V
7 elecALTV A V x y V x y A R S A R S x y
8 6 7 mpan2 A V x y A R S A R S x y
9 elecALTV A V x V x A R A R x
10 9 elvd A V x A R A R x
11 elecALTV A V y V y A S A S y
12 11 elvd A V y A S A S y
13 10 12 anbi12d A V x A R y A S A R x A S y
14 5 8 13 3bitr4d A V x y A R S x A R y A S
15 opelxp x y A R × A S x A R y A S
16 14 15 bitr4di A V x y A R S x y A R × A S
17 16 eqrelrdv2 Rel A R S Rel A R × A S A V A R S = A R × A S
18 3 17 mpancom A V A R S = A R × A S