Metamath Proof Explorer


Theorem eengv

Description: The value of the Euclidean geometry for dimension N . (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion eengv N 𝔼 𝒢 N = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z

Proof

Step Hyp Ref Expression
1 fveq2 n = N 𝔼 n = 𝔼 N
2 1 opeq2d n = N Base ndx 𝔼 n = Base ndx 𝔼 N
3 1 adantr n = N x 𝔼 n 𝔼 n = 𝔼 N
4 simpl n = N x 𝔼 n y 𝔼 n n = N
5 4 oveq2d n = N x 𝔼 n y 𝔼 n 1 n = 1 N
6 5 sumeq1d n = N x 𝔼 n y 𝔼 n i = 1 n x i y i 2 = i = 1 N x i y i 2
7 1 3 6 mpoeq123dva n = N x 𝔼 n , y 𝔼 n i = 1 n x i y i 2 = x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
8 7 opeq2d n = N dist ndx x 𝔼 n , y 𝔼 n i = 1 n x i y i 2 = dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
9 2 8 preq12d n = N Base ndx 𝔼 n dist ndx x 𝔼 n , y 𝔼 n i = 1 n x i y i 2 = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
10 1 adantr n = N x 𝔼 n y 𝔼 n 𝔼 n = 𝔼 N
11 10 rabeqdv n = N x 𝔼 n y 𝔼 n z 𝔼 n | z Btwn x y = z 𝔼 N | z Btwn x y
12 1 3 11 mpoeq123dva n = N x 𝔼 n , y 𝔼 n z 𝔼 n | z Btwn x y = x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y
13 12 opeq2d n = N Itv ndx x 𝔼 n , y 𝔼 n z 𝔼 n | z Btwn x y = Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y
14 3 difeq1d n = N x 𝔼 n 𝔼 n x = 𝔼 N x
15 1 rabeqdv n = N z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
16 15 adantr n = N x 𝔼 n y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
17 1 14 16 mpoeq123dva n = N x 𝔼 n , y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
18 17 opeq2d n = N Line 𝒢 ndx x 𝔼 n , y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
19 13 18 preq12d n = N Itv ndx x 𝔼 n , y 𝔼 n z 𝔼 n | z Btwn x y Line 𝒢 ndx x 𝔼 n , y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
20 9 19 uneq12d n = N Base ndx 𝔼 n dist ndx x 𝔼 n , y 𝔼 n i = 1 n x i y i 2 Itv ndx x 𝔼 n , y 𝔼 n z 𝔼 n | z Btwn x y Line 𝒢 ndx x 𝔼 n , y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
21 df-eeng 𝔼 𝒢 = n Base ndx 𝔼 n dist ndx x 𝔼 n , y 𝔼 n i = 1 n x i y i 2 Itv ndx x 𝔼 n , y 𝔼 n z 𝔼 n | z Btwn x y Line 𝒢 ndx x 𝔼 n , y 𝔼 n x z 𝔼 n | z Btwn x y x Btwn z y y Btwn x z
22 prex Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 V
23 prex Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z V
24 22 23 unex Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z V
25 20 21 24 fvmpt N 𝔼 𝒢 N = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z