Metamath Proof Explorer


Theorem efcvg

Description: The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis efcvg.1 F=n0Ann!
Assertion efcvg Aseq0+FeA

Proof

Step Hyp Ref Expression
1 efcvg.1 F=n0Ann!
2 nn0uz 0=0
3 0zd A0
4 1 eftval k0Fk=Akk!
5 4 adantl Ak0Fk=Akk!
6 eftcl Ak0Akk!
7 1 efcllem Aseq0+Fdom
8 2 3 5 6 7 isumclim2 Aseq0+Fk0Akk!
9 efval AeA=k0Akk!
10 8 9 breqtrrd Aseq0+FeA