Metamath Proof Explorer


Theorem efcvgfsum

Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis efcvgfsum.1 F = n 0 k = 0 n A k k !
Assertion efcvgfsum A F e A

Proof

Step Hyp Ref Expression
1 efcvgfsum.1 F = n 0 k = 0 n A k k !
2 oveq2 n = j 0 n = 0 j
3 2 sumeq1d n = j k = 0 n A k k ! = k = 0 j A k k !
4 sumex k = 0 j A k k ! V
5 3 1 4 fvmpt j 0 F j = k = 0 j A k k !
6 5 adantl A j 0 F j = k = 0 j A k k !
7 elfznn0 k 0 j k 0
8 7 adantl A j 0 k 0 j k 0
9 eqid n 0 A n n ! = n 0 A n n !
10 9 eftval k 0 n 0 A n n ! k = A k k !
11 8 10 syl A j 0 k 0 j n 0 A n n ! k = A k k !
12 simpr A j 0 j 0
13 nn0uz 0 = 0
14 12 13 eleqtrdi A j 0 j 0
15 simpll A j 0 k 0 j A
16 eftcl A k 0 A k k !
17 15 8 16 syl2anc A j 0 k 0 j A k k !
18 11 14 17 fsumser A j 0 k = 0 j A k k ! = seq 0 + n 0 A n n ! j
19 6 18 eqtrd A j 0 F j = seq 0 + n 0 A n n ! j
20 19 ralrimiva A j 0 F j = seq 0 + n 0 A n n ! j
21 sumex k = 0 n A k k ! V
22 21 1 fnmpti F Fn 0
23 0z 0
24 seqfn 0 seq 0 + n 0 A n n ! Fn 0
25 23 24 ax-mp seq 0 + n 0 A n n ! Fn 0
26 13 fneq2i seq 0 + n 0 A n n ! Fn 0 seq 0 + n 0 A n n ! Fn 0
27 25 26 mpbir seq 0 + n 0 A n n ! Fn 0
28 eqfnfv F Fn 0 seq 0 + n 0 A n n ! Fn 0 F = seq 0 + n 0 A n n ! j 0 F j = seq 0 + n 0 A n n ! j
29 22 27 28 mp2an F = seq 0 + n 0 A n n ! j 0 F j = seq 0 + n 0 A n n ! j
30 20 29 sylibr A F = seq 0 + n 0 A n n !
31 9 efcvg A seq 0 + n 0 A n n ! e A
32 30 31 eqbrtrd A F e A