| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efcvgfsum.1 |  |-  F = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 2 |  | oveq2 |  |-  ( n = j -> ( 0 ... n ) = ( 0 ... j ) ) | 
						
							| 3 | 2 | sumeq1d |  |-  ( n = j -> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 4 |  | sumex |  |-  sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) e. _V | 
						
							| 5 | 3 1 4 | fvmpt |  |-  ( j e. NN0 -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 7 |  | elfznn0 |  |-  ( k e. ( 0 ... j ) -> k e. NN0 ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> k e. NN0 ) | 
						
							| 9 |  | eqid |  |-  ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) | 
						
							| 10 | 9 | eftval |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) | 
						
							| 13 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 14 | 12 13 | eleqtrdi |  |-  ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) | 
						
							| 15 |  | simpll |  |-  ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> A e. CC ) | 
						
							| 16 |  | eftcl |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 17 | 15 8 16 | syl2anc |  |-  ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 18 | 11 14 17 | fsumser |  |-  ( ( A e. CC /\ j e. NN0 ) -> sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) | 
						
							| 19 | 6 18 | eqtrd |  |-  ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( A e. CC -> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) | 
						
							| 21 |  | sumex |  |-  sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) e. _V | 
						
							| 22 | 21 1 | fnmpti |  |-  F Fn NN0 | 
						
							| 23 |  | 0z |  |-  0 e. ZZ | 
						
							| 24 |  | seqfn |  |-  ( 0 e. ZZ -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) | 
						
							| 25 | 23 24 | ax-mp |  |-  seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) | 
						
							| 26 | 13 | fneq2i |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 <-> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) | 
						
							| 27 | 25 26 | mpbir |  |-  seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 | 
						
							| 28 |  | eqfnfv |  |-  ( ( F Fn NN0 /\ seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 ) -> ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) | 
						
							| 29 | 22 27 28 | mp2an |  |-  ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) | 
						
							| 30 | 20 29 | sylibr |  |-  ( A e. CC -> F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ) | 
						
							| 31 | 9 | efcvg |  |-  ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) | 
						
							| 32 | 30 31 | eqbrtrd |  |-  ( A e. CC -> F ~~> ( exp ` A ) ) |