Metamath Proof Explorer


Theorem egrsubgr

Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 17-Dec-2020)

Ref Expression
Assertion egrsubgr GWSUVtxSVtxGFuniEdgSEdgS=SSubGraphG

Proof

Step Hyp Ref Expression
1 simp2 GWSUVtxSVtxGFuniEdgSEdgS=VtxSVtxG
2 eqid iEdgS=iEdgS
3 eqid EdgS=EdgS
4 2 3 edg0iedg0 FuniEdgSEdgS=iEdgS=
5 4 adantl GWSUFuniEdgSEdgS=iEdgS=
6 res0 iEdgG=
7 6 eqcomi =iEdgG
8 id iEdgS=iEdgS=
9 dmeq iEdgS=domiEdgS=dom
10 dm0 dom=
11 9 10 eqtrdi iEdgS=domiEdgS=
12 11 reseq2d iEdgS=iEdgGdomiEdgS=iEdgG
13 7 8 12 3eqtr4a iEdgS=iEdgS=iEdgGdomiEdgS
14 5 13 syl6bi GWSUFuniEdgSEdgS=iEdgS=iEdgGdomiEdgS
15 14 impr GWSUFuniEdgSEdgS=iEdgS=iEdgGdomiEdgS
16 15 3adant2 GWSUVtxSVtxGFuniEdgSEdgS=iEdgS=iEdgGdomiEdgS
17 0ss 𝒫VtxS
18 sseq1 EdgS=EdgS𝒫VtxS𝒫VtxS
19 17 18 mpbiri EdgS=EdgS𝒫VtxS
20 19 adantl FuniEdgSEdgS=EdgS𝒫VtxS
21 20 3ad2ant3 GWSUVtxSVtxGFuniEdgSEdgS=EdgS𝒫VtxS
22 eqid VtxS=VtxS
23 eqid VtxG=VtxG
24 eqid iEdgG=iEdgG
25 22 23 2 24 3 issubgr GWSUSSubGraphGVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
26 25 3ad2ant1 GWSUVtxSVtxGFuniEdgSEdgS=SSubGraphGVtxSVtxGiEdgS=iEdgGdomiEdgSEdgS𝒫VtxS
27 1 16 21 26 mpbir3and GWSUVtxSVtxGFuniEdgSEdgS=SSubGraphG