Metamath Proof Explorer


Theorem eldmqs1cossres

Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion eldmqs1cossres BVBdomRA/RAuAxuRB=xRA

Proof

Step Hyp Ref Expression
1 elqsg BVBdomRA/RAxdomRAB=xRA
2 df-rex xdomRAB=xRAxxdomRAB=xRA
3 eldm1cossres2 xVxdomRAuAxuR
4 3 elv xdomRAuAxuR
5 4 anbi1i xdomRAB=xRAuAxuRB=xRA
6 5 exbii xxdomRAB=xRAxuAxuRB=xRA
7 2 6 bitri xdomRAB=xRAxuAxuRB=xRA
8 1 7 bitrdi BVBdomRA/RAxuAxuRB=xRA
9 df-rex xuRB=xRAxxuRB=xRA
10 9 rexbii uAxuRB=xRAuAxxuRB=xRA
11 rexcom4 uAxxuRB=xRAxuAxuRB=xRA
12 r19.41v uAxuRB=xRAuAxuRB=xRA
13 12 exbii xuAxuRB=xRAxuAxuRB=xRA
14 11 13 bitri uAxxuRB=xRAxuAxuRB=xRA
15 10 14 bitri uAxuRB=xRAxuAxuRB=xRA
16 8 15 bitr4di BVBdomRA/RAuAxuRB=xRA