Metamath Proof Explorer


Theorem elfzonlteqm1

Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018)

Ref Expression
Assertion elfzonlteqm1 A0..^B¬A<B1A=B1

Proof

Step Hyp Ref Expression
1 0z 0
2 elfzo0 A0..^BA0BA<B
3 elnnuz BB1
4 3 biimpi BB1
5 0p1e1 0+1=1
6 5 a1i B0+1=1
7 6 fveq2d B0+1=1
8 4 7 eleqtrrd BB0+1
9 8 3ad2ant2 A0BA<BB0+1
10 2 9 sylbi A0..^BB0+1
11 fzosplitsnm1 0B0+10..^B=0..^B1B1
12 1 10 11 sylancr A0..^B0..^B=0..^B1B1
13 eleq2 0..^B=0..^B1B1A0..^BA0..^B1B1
14 elun A0..^B1B1A0..^B1AB1
15 elfzo0 A0..^B1A0B1A<B1
16 pm2.24 A<B1¬A<B1A=B1
17 16 3ad2ant3 A0B1A<B1¬A<B1A=B1
18 15 17 sylbi A0..^B1¬A<B1A=B1
19 elsni AB1A=B1
20 19 a1d AB1¬A<B1A=B1
21 18 20 jaoi A0..^B1AB1¬A<B1A=B1
22 14 21 sylbi A0..^B1B1¬A<B1A=B1
23 13 22 syl6bi 0..^B=0..^B1B1A0..^B¬A<B1A=B1
24 12 23 mpcom A0..^B¬A<B1A=B1
25 24 imp A0..^B¬A<B1A=B1