Metamath Proof Explorer


Theorem fzosplitsnm1

Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018)

Ref Expression
Assertion fzosplitsnm1 ABA+1A..^B=A..^B1B1

Proof

Step Hyp Ref Expression
1 eluzelz BA+1B
2 1 zcnd BA+1B
3 2 adantl ABA+1B
4 ax-1cn 1
5 npcan B1B-1+1=B
6 5 eqcomd B1B=B-1+1
7 3 4 6 sylancl ABA+1B=B-1+1
8 7 oveq2d ABA+1A..^B=A..^B-1+1
9 eluzp1m1 ABA+1B1A
10 1 adantl ABA+1B
11 peano2zm BB1
12 uzid B1B1B1
13 peano2uz B1B1B-1+1B1
14 10 11 12 13 4syl ABA+1B-1+1B1
15 elfzuzb B1AB-1+1B1AB-1+1B1
16 9 14 15 sylanbrc ABA+1B1AB-1+1
17 fzosplit B1AB-1+1A..^B-1+1=A..^B1B1..^B-1+1
18 16 17 syl ABA+1A..^B-1+1=A..^B1B1..^B-1+1
19 1 11 syl BA+1B1
20 19 adantl ABA+1B1
21 fzosn B1B1..^B-1+1=B1
22 20 21 syl ABA+1B1..^B-1+1=B1
23 22 uneq2d ABA+1A..^B1B1..^B-1+1=A..^B1B1
24 8 18 23 3eqtrd ABA+1A..^B=A..^B1B1