Metamath Proof Explorer


Theorem elhoi

Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis elhoi.1 φXV
Assertion elhoi φYABXY:X*xXYxAB

Proof

Step Hyp Ref Expression
1 elhoi.1 φXV
2 ovexd φABV
3 elmapg ABVXVYABXY:XAB
4 2 1 3 syl2anc φYABXY:XAB
5 id Y:XABY:XAB
6 icossxr AB*
7 6 a1i Y:XABAB*
8 5 7 fssd Y:XABY:X*
9 ffvelcdm Y:XABxXYxAB
10 9 ralrimiva Y:XABxXYxAB
11 8 10 jca Y:XABY:X*xXYxAB
12 ffn Y:X*YFnX
13 12 adantr Y:X*xXYxABYFnX
14 simpr Y:X*xXYxABxXYxAB
15 13 14 jca Y:X*xXYxABYFnXxXYxAB
16 ffnfv Y:XABYFnXxXYxAB
17 15 16 sylibr Y:X*xXYxABY:XAB
18 11 17 impbii Y:XABY:X*xXYxAB
19 18 a1i φY:XABY:X*xXYxAB
20 4 19 bitrd φYABXY:X*xXYxAB