Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eliccnelico.1 | |
|
eliccnelico.b | |
||
eliccnelico.c | |
||
eliccnelico.nel | |
||
Assertion | eliccnelico | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccnelico.1 | |
|
2 | eliccnelico.b | |
|
3 | eliccnelico.c | |
|
4 | eliccnelico.nel | |
|
5 | eliccxr | |
|
6 | 3 5 | syl | |
7 | iccleub | |
|
8 | 1 2 3 7 | syl3anc | |
9 | 1 | adantr | |
10 | 2 | adantr | |
11 | 6 | adantr | |
12 | iccgelb | |
|
13 | 1 2 3 12 | syl3anc | |
14 | 13 | adantr | |
15 | simpr | |
|
16 | xrltnle | |
|
17 | 6 2 16 | syl2anc | |
18 | 17 | adantr | |
19 | 15 18 | mpbird | |
20 | 9 10 11 14 19 | elicod | |
21 | 4 | adantr | |
22 | 20 21 | condan | |
23 | 6 2 8 22 | xrletrid | |