Metamath Proof Explorer


Theorem eliccnelico

Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses eliccnelico.1 φA*
eliccnelico.b φB*
eliccnelico.c φCAB
eliccnelico.nel φ¬CAB
Assertion eliccnelico φC=B

Proof

Step Hyp Ref Expression
1 eliccnelico.1 φA*
2 eliccnelico.b φB*
3 eliccnelico.c φCAB
4 eliccnelico.nel φ¬CAB
5 eliccxr CABC*
6 3 5 syl φC*
7 iccleub A*B*CABCB
8 1 2 3 7 syl3anc φCB
9 1 adantr φ¬BCA*
10 2 adantr φ¬BCB*
11 6 adantr φ¬BCC*
12 iccgelb A*B*CABAC
13 1 2 3 12 syl3anc φAC
14 13 adantr φ¬BCAC
15 simpr φ¬BC¬BC
16 xrltnle C*B*C<B¬BC
17 6 2 16 syl2anc φC<B¬BC
18 17 adantr φ¬BCC<B¬BC
19 15 18 mpbird φ¬BCC<B
20 9 10 11 14 19 elicod φ¬BCCAB
21 4 adantr φ¬BC¬CAB
22 20 21 condan φBC
23 6 2 8 22 xrletrid φC=B