Metamath Proof Explorer


Theorem elioc2

Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007) (Revised by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion elioc2 A*BCABCA<CCB

Proof

Step Hyp Ref Expression
1 rexr BB*
2 elioc1 A*B*CABC*A<CCB
3 1 2 sylan2 A*BCABC*A<CCB
4 mnfxr −∞*
5 4 a1i A*BC*A<CCB−∞*
6 simpll A*BC*A<CCBA*
7 simpr1 A*BC*A<CCBC*
8 mnfle A*−∞A
9 8 ad2antrr A*BC*A<CCB−∞A
10 simpr2 A*BC*A<CCBA<C
11 5 6 7 9 10 xrlelttrd A*BC*A<CCB−∞<C
12 1 ad2antlr A*BC*A<CCBB*
13 pnfxr +∞*
14 13 a1i A*BC*A<CCB+∞*
15 simpr3 A*BC*A<CCBCB
16 ltpnf BB<+∞
17 16 ad2antlr A*BC*A<CCBB<+∞
18 7 12 14 15 17 xrlelttrd A*BC*A<CCBC<+∞
19 xrrebnd C*C−∞<CC<+∞
20 7 19 syl A*BC*A<CCBC−∞<CC<+∞
21 11 18 20 mpbir2and A*BC*A<CCBC
22 21 10 15 3jca A*BC*A<CCBCA<CCB
23 22 ex A*BC*A<CCBCA<CCB
24 rexr CC*
25 24 3anim1i CA<CCBC*A<CCB
26 23 25 impbid1 A*BC*A<CCBCA<CCB
27 3 26 bitrd A*BCABCA<CCB