Metamath Proof Explorer


Theorem eliocre

Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion eliocre BCABC

Proof

Step Hyp Ref Expression
1 df-ioc .=x*,y*z*|x<zzy
2 1 elixx3g CABA*B*C*A<CCB
3 2 biimpi CABA*B*C*A<CCB
4 3 simpld CABA*B*C*
5 4 simp3d CABC*
6 5 adantl BCABC*
7 simpl BCABB
8 mnfxr −∞*
9 8 a1i CAB−∞*
10 4 simp1d CABA*
11 mnfle A*−∞A
12 10 11 syl CAB−∞A
13 3 simprd CABA<CCB
14 13 simpld CABA<C
15 9 10 5 12 14 xrlelttrd CAB−∞<C
16 15 adantl BCAB−∞<C
17 13 simprd CABCB
18 17 adantl BCABCB
19 xrre C*B−∞<CCBC
20 6 7 16 18 19 syl22anc BCABC