Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eliocre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioc | |
|
2 | 1 | elixx3g | |
3 | 2 | biimpi | |
4 | 3 | simpld | |
5 | 4 | simp3d | |
6 | 5 | adantl | |
7 | simpl | |
|
8 | mnfxr | |
|
9 | 8 | a1i | |
10 | 4 | simp1d | |
11 | mnfle | |
|
12 | 10 11 | syl | |
13 | 3 | simprd | |
14 | 13 | simpld | |
15 | 9 10 5 12 14 | xrlelttrd | |
16 | 15 | adantl | |
17 | 13 | simprd | |
18 | 17 | adantl | |
19 | xrre | |
|
20 | 6 7 16 18 19 | syl22anc | |