Metamath Proof Explorer


Theorem eliooshift

Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliooshift.a φA
eliooshift.b φB
eliooshift.c φC
eliooshift.d φD
Assertion eliooshift φABCA+DB+DC+D

Proof

Step Hyp Ref Expression
1 eliooshift.a φA
2 eliooshift.b φB
3 eliooshift.c φC
4 eliooshift.d φD
5 1 4 readdcld φA+D
6 5 1 2thd φA+DA
7 2 1 4 ltadd1d φB<AB+D<A+D
8 7 bicomd φB+D<A+DB<A
9 1 3 4 ltadd1d φA<CA+D<C+D
10 9 bicomd φA+D<C+DA<C
11 6 8 10 3anbi123d φA+DB+D<A+DA+D<C+DAB<AA<C
12 2 4 readdcld φB+D
13 12 rexrd φB+D*
14 3 4 readdcld φC+D
15 14 rexrd φC+D*
16 elioo2 B+D*C+D*A+DB+DC+DA+DB+D<A+DA+D<C+D
17 13 15 16 syl2anc φA+DB+DC+DA+DB+D<A+DA+D<C+D
18 2 rexrd φB*
19 3 rexrd φC*
20 elioo2 B*C*ABCAB<AA<C
21 18 19 20 syl2anc φABCAB<AA<C
22 11 17 21 3bitr4rd φABCA+DB+DC+D