Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Diophantine sets 2 miscellanea
ellz1
Next ⟩
lzunuz
Metamath Proof Explorer
Ascii
Unicode
Theorem
ellz1
Description:
Membership in a lower set of integers.
(Contributed by
Stefan O'Rear
, 9-Oct-2014)
Ref
Expression
Assertion
ellz1
⊢
B
∈
ℤ
→
A
∈
ℤ
∖
ℤ
≥
B
+
1
↔
A
∈
ℤ
∧
A
≤
B
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
A
∈
ℤ
∖
ℤ
≥
B
+
1
↔
A
∈
ℤ
∧
¬
A
∈
ℤ
≥
B
+
1
2
zltp1le
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
B
<
A
↔
B
+
1
≤
A
3
2
notbid
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
¬
B
<
A
↔
¬
B
+
1
≤
A
4
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
5
zre
⊢
B
∈
ℤ
→
B
∈
ℝ
6
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
7
4
5
6
syl2anr
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
A
≤
B
↔
¬
B
<
A
8
peano2z
⊢
B
∈
ℤ
→
B
+
1
∈
ℤ
9
eluz
⊢
B
+
1
∈
ℤ
∧
A
∈
ℤ
→
A
∈
ℤ
≥
B
+
1
↔
B
+
1
≤
A
10
8
9
sylan
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
A
∈
ℤ
≥
B
+
1
↔
B
+
1
≤
A
11
10
notbid
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
¬
A
∈
ℤ
≥
B
+
1
↔
¬
B
+
1
≤
A
12
3
7
11
3bitr4rd
⊢
B
∈
ℤ
∧
A
∈
ℤ
→
¬
A
∈
ℤ
≥
B
+
1
↔
A
≤
B
13
12
pm5.32da
⊢
B
∈
ℤ
→
A
∈
ℤ
∧
¬
A
∈
ℤ
≥
B
+
1
↔
A
∈
ℤ
∧
A
≤
B
14
1
13
syl5bb
⊢
B
∈
ℤ
→
A
∈
ℤ
∖
ℤ
≥
B
+
1
↔
A
∈
ℤ
∧
A
≤
B